organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-2,4-Di­chloro­benzyl­­idene]-4-methyl­aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Govt. M. D. College, Toba Tek Singh, Punjab, Pakistan, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 September 2010; accepted 13 September 2010; online 18 September 2010)

In the title compound, C14H11Cl2N, the dihedral angle between the 4-methyl­anilinic and 2,4-dichloro­benzaldehyde moieties is 7.37 (8)°. In the crystal, C—H⋯π inter­actions between the terminal methyl group and a symmetry-related ring of the anilinic group help to establish the packing.

Related literature

For background to our project to synthesize various Schiff bases of 2,4-dichloro­benzaldehyde as possible ligands for complexing metals, see: Hayat et al. (2010[Hayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523.]). For related structures, see: Hayat et al. (2010[Hayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523.]); Bernstein (1972[Bernstein, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 946-950.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2N

  • Mr = 264.14

  • Monoclinic, P 21

  • a = 10.1069 (3) Å

  • b = 4.7469 (2) Å

  • c = 12.9922 (4) Å

  • β = 95.668 (2)°

  • V = 620.27 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.916

  • 5221 measured reflections

  • 2082 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.06

  • 2082 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 807 Friedel pairs

  • Flack parameter: 0.10 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7CCg1i 0.96 2.71 3.565 (2) 148
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our on going project related to synthesize various Schiff bases of 2,4-dichlorobenzaldehyde as possible ligands for complexing metals (Hayat et al., 2010), we report here the title compound.

In the title compound, the 4-methylanilinic group A (C1—C7/N1) and 2,4-dichlorobenzaldehyde moiety B (C8—C14/CL1/CL2) are planar with r. m. s. deviation of 0.0114 and 0.0209 Å, respectively. The dihedral angle between A/B is 7.37 (8)°. The title compound essentially consists of monomers (Fig. 1). There exist weak intramolecular C—H···Cl hydrogen bonds (Table 1, Fig. 1) forming an S(5) ring motif (Bernstein et al., 1995). There also exists a C—H···π interaction (Table 1) which helps in consolidating the crystal packing. Bond distances and bond angles agree with related compounds already published as the 4-chloro-N-[(E)-2,4-dichlorobenzylidene]aniline (Hayat et al., 2010) and the N-(2,4-dichlorobenzylidene)aniline (Bernstein, 1972).

Related literature top

For background to our project to synthesize various Schiff bases of 2,4-dichlorobenzaldehyde as possible ligands for complexing metals, see: Hayat et al. (2010). For related structures, see: Hayat et al. (2010); Bernstein (1972). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 4-methylaniline and 2,4-dichlorobanzaldehyde were refluxed in methanol for 30 min resulting in yellow solution. The solution was kept at room temperature which affoarded light yellow needles after 72 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H-atoms and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii. The dotted line represents the intramolecular H-bonding.
N-[(E)-2,4-Dichlorobenzylidene]-4-methylaniline top
Crystal data top
C14H11Cl2NF(000) = 272
Mr = 264.14Dx = 1.414 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1937 reflections
a = 10.1069 (3) Åθ = 1.6–25.2°
b = 4.7469 (2) ŵ = 0.50 mm1
c = 12.9922 (4) ÅT = 296 K
β = 95.668 (2)°Needles, colorless
V = 620.27 (4) Å30.32 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2082 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.20 pixels mm-1θmax = 25.2°, θmin = 1.6°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 54
Tmin = 0.886, Tmax = 0.916l = 1515
5221 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.0661P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2082 reflectionsΔρmax = 0.16 e Å3
155 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 807 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (7)
Crystal data top
C14H11Cl2NV = 620.27 (4) Å3
Mr = 264.14Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.1069 (3) ŵ = 0.50 mm1
b = 4.7469 (2) ÅT = 296 K
c = 12.9922 (4) Å0.32 × 0.20 × 0.18 mm
β = 95.668 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1937 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.916Rint = 0.022
5221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.15 e Å3
2082 reflectionsAbsolute structure: Flack (1983), 807 Friedel pairs
155 parametersAbsolute structure parameter: 0.10 (7)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16693 (6)0.51040 (18)0.89821 (4)0.0670 (3)
Cl20.39799 (5)1.07125 (13)0.57256 (4)0.0492 (2)
N10.08154 (17)0.0949 (5)0.69281 (13)0.0393 (6)
C10.1724 (2)0.1021 (5)0.74152 (15)0.0359 (7)
C20.2670 (2)0.2162 (5)0.68218 (17)0.0436 (8)
C30.3592 (2)0.4089 (6)0.72278 (18)0.0488 (8)
C40.3619 (2)0.4993 (5)0.82462 (16)0.0422 (8)
C50.2663 (2)0.3948 (6)0.88216 (16)0.0478 (8)
C60.1728 (2)0.1997 (6)0.84251 (16)0.0450 (8)
C70.4635 (3)0.7104 (6)0.8693 (2)0.0601 (10)
C80.0090 (2)0.2361 (5)0.74719 (16)0.0396 (7)
C90.08867 (19)0.4437 (5)0.70395 (15)0.0354 (6)
C100.17493 (19)0.5787 (6)0.76574 (14)0.0394 (6)
C110.2697 (2)0.7695 (5)0.72713 (16)0.0408 (7)
C120.2778 (2)0.8341 (5)0.62295 (16)0.0359 (7)
C130.1920 (2)0.7130 (5)0.55900 (15)0.0376 (7)
C140.10045 (19)0.5191 (5)0.59983 (14)0.0378 (7)
H20.267570.160570.613590.0523*
H30.421110.480340.681210.0586*
H50.264080.456860.949870.0574*
H60.109580.133130.883900.0540*
H7A0.458680.726130.942460.0901*
H7B0.550830.648720.856420.0901*
H7C0.445630.890530.837300.0901*
H80.017850.207230.818330.0475*
H110.326890.852790.770040.0490*
H130.196210.762120.489460.0452*
H140.044260.434960.556320.0453*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0692 (4)0.0965 (7)0.0371 (3)0.0234 (4)0.0140 (3)0.0138 (3)
Cl20.0445 (3)0.0449 (4)0.0571 (3)0.0089 (3)0.0002 (2)0.0058 (3)
N10.0421 (9)0.0365 (12)0.0392 (8)0.0048 (9)0.0034 (7)0.0005 (9)
C10.0374 (11)0.0300 (13)0.0394 (11)0.0005 (9)0.0007 (8)0.0031 (9)
C20.0509 (13)0.0423 (15)0.0388 (11)0.0090 (12)0.0108 (10)0.0015 (10)
C30.0487 (12)0.0460 (15)0.0524 (12)0.0099 (14)0.0083 (10)0.0053 (13)
C40.0413 (12)0.0301 (15)0.0529 (12)0.0007 (10)0.0063 (9)0.0033 (11)
C50.0565 (13)0.0481 (17)0.0373 (10)0.0021 (13)0.0029 (9)0.0031 (11)
C60.0497 (13)0.0473 (15)0.0384 (11)0.0087 (12)0.0062 (9)0.0025 (10)
C70.0529 (15)0.0483 (17)0.0748 (18)0.0085 (13)0.0145 (12)0.0017 (14)
C80.0419 (12)0.0385 (14)0.0380 (10)0.0012 (10)0.0026 (9)0.0012 (10)
C90.0330 (10)0.0335 (12)0.0394 (10)0.0025 (10)0.0016 (8)0.0012 (10)
C100.0415 (10)0.0443 (14)0.0328 (9)0.0009 (12)0.0057 (8)0.0030 (11)
C110.0399 (11)0.0410 (15)0.0424 (11)0.0039 (10)0.0089 (9)0.0022 (10)
C120.0352 (11)0.0290 (12)0.0426 (11)0.0022 (9)0.0004 (8)0.0011 (9)
C130.0419 (12)0.0360 (13)0.0348 (10)0.0011 (10)0.0027 (9)0.0014 (10)
C140.0370 (10)0.0388 (15)0.0378 (10)0.0020 (10)0.0055 (8)0.0060 (11)
Geometric parameters (Å, º) top
Cl1—C101.7454 (19)C11—C121.382 (3)
Cl2—C121.736 (2)C12—C131.384 (3)
N1—C11.415 (3)C13—C141.374 (3)
N1—C81.260 (3)C2—H20.9300
C1—C21.396 (3)C3—H30.9300
C1—C61.391 (3)C5—H50.9300
C2—C31.373 (3)C6—H60.9300
C3—C41.389 (3)C7—H7A0.9600
C4—C51.372 (3)C7—H7B0.9600
C4—C71.509 (4)C7—H7C0.9600
C5—C61.386 (3)C8—H80.9300
C8—C91.467 (3)C11—H110.9300
C9—C101.398 (3)C13—H130.9300
C9—C141.393 (3)C14—H140.9300
C10—C111.376 (3)
Cl1···C6i3.519 (2)C1···H7Cviii3.0800
Cl2···Cl2ii3.5598 (8)C2···H7Cviii3.0000
Cl2···Cl2iii3.5598 (8)C3···H7Cviii2.9600
Cl1···H7Biv2.9500C4···H7Cviii3.0100
Cl1···H6i2.9100C5···H7Cviii3.0900
Cl1···H82.6500C6···H82.4900
Cl2···H2v3.1400C8···H62.6300
N1···C14vi3.446 (3)C13···H2x2.9000
N1···H142.6300H2···Cl2xi3.1400
N1···H13vii2.8500H2···C13vii2.9000
C1···C4viii3.552 (3)H2···H13vii2.4800
C1···C8vi3.553 (3)H5···H7A2.3600
C1···C9vi3.405 (3)H6···C82.6300
C4···C1vi3.552 (3)H6···H82.0100
C5···C8vi3.465 (3)H6···Cl1ix2.9100
C6···C9vi3.486 (3)H7A···H52.3600
C6···C8vi3.323 (3)H7B···Cl1xii2.9500
C6···Cl1ix3.519 (2)H7C···C1vi3.0800
C8···C6viii3.323 (3)H7C···C2vi3.0000
C8···C1viii3.553 (3)H7C···C3vi2.9600
C8···C5viii3.465 (3)H7C···C4vi3.0100
C8···C11vi3.573 (3)H7C···C5vi3.0900
C9···C6viii3.486 (3)H8···Cl12.6500
C9···C1viii3.405 (3)H8···C62.4900
C9···C12vi3.569 (3)H8···H62.0100
C11···C8viii3.573 (3)H13···N1x2.8500
C12···C9viii3.569 (3)H13···H2x2.4800
C14···N1viii3.446 (3)H14···N12.6300
C1—N1—C8119.23 (18)C9—C14—C13122.46 (19)
N1—C1—C2117.33 (18)C1—C2—H2119.00
N1—C1—C6125.67 (19)C3—C2—H2119.00
C2—C1—C6117.0 (2)C2—C3—H3119.00
C1—C2—C3121.5 (2)C4—C3—H3119.00
C2—C3—C4121.4 (2)C4—C5—H5119.00
C3—C4—C5117.3 (2)C6—C5—H5119.00
C3—C4—C7121.4 (2)C1—C6—H6120.00
C5—C4—C7121.3 (2)C5—C6—H6120.00
C4—C5—C6122.0 (2)C4—C7—H7A109.00
C1—C6—C5120.8 (2)C4—C7—H7B109.00
N1—C8—C9123.32 (19)C4—C7—H7C109.00
C8—C9—C10121.49 (18)H7A—C7—H7B110.00
C8—C9—C14122.30 (19)H7A—C7—H7C110.00
C10—C9—C14116.21 (19)H7B—C7—H7C109.00
Cl1—C10—C9120.69 (17)N1—C8—H8118.00
Cl1—C10—C11116.39 (16)C9—C8—H8118.00
C9—C10—C11122.92 (18)C10—C11—H11121.00
C10—C11—C12118.33 (19)C12—C11—H11121.00
Cl2—C12—C11118.99 (16)C12—C13—H13121.00
Cl2—C12—C13119.97 (16)C14—C13—H13120.00
C11—C12—C13121.0 (2)C9—C14—H14119.00
C12—C13—C14118.98 (18)C13—C14—H14119.00
C8—N1—C1—C2168.7 (2)N1—C8—C9—C145.9 (4)
C8—N1—C1—C613.7 (4)C8—C9—C10—Cl11.5 (3)
C1—N1—C8—C9179.6 (2)C8—C9—C10—C11178.5 (2)
N1—C1—C2—C3180.0 (2)C14—C9—C10—Cl1178.14 (17)
C6—C1—C2—C32.2 (3)C14—C9—C10—C112.0 (3)
N1—C1—C6—C5179.6 (2)C8—C9—C14—C13179.9 (2)
C2—C1—C6—C52.0 (3)C10—C9—C14—C130.6 (3)
C1—C2—C3—C40.2 (4)Cl1—C10—C11—C12178.75 (18)
C2—C3—C4—C51.9 (4)C9—C10—C11—C121.3 (4)
C2—C3—C4—C7179.8 (2)C10—C11—C12—Cl2179.26 (18)
C3—C4—C5—C62.1 (4)C10—C11—C12—C130.7 (3)
C7—C4—C5—C6179.6 (2)Cl2—C12—C13—C14177.94 (17)
C4—C5—C6—C10.2 (4)C11—C12—C13—C142.1 (3)
N1—C8—C9—C10174.6 (2)C12—C13—C14—C91.4 (3)
Symmetry codes: (i) x, y+1/2, z+2; (ii) x1, y1/2, z+1; (iii) x1, y+1/2, z+1; (iv) x1, y+1, z; (v) x, y+3/2, z+1; (vi) x, y1, z; (vii) x, y1/2, z+1; (viii) x, y+1, z; (ix) x, y1/2, z+2; (x) x, y+1/2, z+1; (xi) x, y3/2, z+1; (xii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl10.932.653.065 (2)108
C7—H7C···Cg1vi0.962.713.565 (2)148
Symmetry code: (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11Cl2N
Mr264.14
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.1069 (3), 4.7469 (2), 12.9922 (4)
β (°) 95.668 (2)
V3)620.27 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.886, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
5221, 2082, 1937
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.06
No. of reflections2082
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15
Absolute structureFlack (1983), 807 Friedel pairs
Absolute structure parameter0.10 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl10.932.653.065 (2)108
C7—H7C···Cg1i0.962.713.565 (2)148
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 946–950.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHayat, U., Siddiqui, W. A., Tahir, M. N. & Hussain, G. (2010). Acta Cryst. E66, o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds