organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-hy­dr­oxy-3,5-dimeth­­oxy­benzalde­hyde (2,4-di­nitro­phen­yl)hydrazone] N,N-di­methyl­formamide disolvate monohydrate

aCollege of Chemical Engineering and Environment, North University of China, Taiyuan 030051, People's Republic of China, and bKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: zhaolinxiu126@126.com

(Received 14 September 2010; accepted 21 September 2010; online 30 September 2010)

In the title compound, 2C15H14N4O7·2C3H7NO·H2O, the hydrazone mol­ecules are roughly planar, with the two benzene rings twisted slightly relative to each other by dihedral angle of 6.04 (11) and 7.75 (11)° in the two mol­ecules. The water mol­ecule is linked to the Schiff base mol­ecule by an O—H⋯O hydrogen bond. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general properties of phenyl­hydrazone derivatives, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For related structures, see: Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]); Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); Kuleshova et al. (2003[Kuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Kristallografiya, 48, 645-652.]); Szczesna & Urbanczyk-Lipkowska (2002[Szczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243-249.]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721-o3722.]).

[Scheme 1]

Experimental

Crystal data
  • 2C15H14N4O7·2C3H7NO·H2O

  • Mr = 888.81

  • Triclinic, [P \overline 1]

  • a = 12.208 (2) Å

  • b = 13.931 (2) Å

  • c = 14.537 (2) Å

  • α = 62.405 (16)°

  • β = 74.412 (15)°

  • γ = 72.171 (16)°

  • V = 2062.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.978

  • 15349 measured reflections

  • 8436 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.071

  • S = 0.65

  • 8417 reflections

  • 578 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O16 0.82 1.89 2.610 (2) 145
N2—H2A⋯O4 0.86 2.05 2.637 (2) 125
N2—H2A⋯O17i 0.86 2.40 3.1141 (19) 140
O10—H10⋯O8 0.82 1.89 2.604 (2) 145
O10—H10⋯O11 0.82 2.27 2.7030 (17) 113
N7—H7⋯O12 0.86 2.06 2.642 (2) 125
N7—H7⋯O17 0.86 2.39 3.118 (2) 143
O17—H1A⋯O9ii 0.84 2.22 2.9936 (16) 153
O17—H1A⋯O10ii 0.84 2.42 3.1042 (17) 139
O17—H1C⋯O1 0.84 2.34 3.0790 (19) 147
O17—H1C⋯O2 0.84 2.44 3.1811 (18) 147
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+3, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]); ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and XP in SHELXTL; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al. 1993). Structural information for phenylhydrazone derivatives is useful in studying their coordination properties. As part of our work, we have synthesized the title compound and report the crystal structure.

The asymmetric unit of the title compound, C36H44N10O17, is built up from two independent but roughly identical 4-hydroxy-3,5-dimethoxybenzaldehyde 2,4-dinitrophenylhydrazone, two dimethylformamide and one water molecules (Fig. 1). The hydrazone molecules are almost planar with the two benzene rings slightly twisted to each other by a dihedral angle of 6.04 (11)° and 7.75 (11)° respectivey. Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives(Ohba,1996; Baughman et al., 2004; Kuleshova et al., 2003; Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005).

The Schiff base and the DMF molecules are linked through intermolecular O—H···O hydrogen bonds. There are intramolecular N—H···O hydrogen bond within the hydrazone molecules. Further O-H···O involving the water molecules help to stabilize the packing (Table 1, Fig. 2).

Related literature top

For general properties of phenylhydrazone derivatives, see: Okabe et al. (1993). For related structures, see: Ohba (1996); Baughman et al. (2004); Kuleshova et al. (2003); Szczesna & Urbanczyk-Lipkowska (2002); Zhen & Han (2005). Scheme should show correct ratio of components

Experimental top

2,4-dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous ethanol (10 ml), H2SO4(98%, 0.5 ml) was then added and The mixture was stirred for several minitutes at 351k, 4-hydroxy-3,5-dimethoxybenzaldehyde (1 mmol, 0.182 g) in ethanol (5 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF and water, red single crystals of (I) was obtained after three weeks.

Refinement top

All H atoms attached to C, N and O(hydroxyl) atoms were fixed geometrically and treatedas riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H =0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) or Uiso(H) = 1.5Ueq(Cmethyl, O). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows(Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound,Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Bis[4-hydroxy-3,5-dimethoxybenzaldehyde (2,4-dinitrophenyl)hydrazone] N,N-dimethylformamide disolvate monohydrate top
Crystal data top
2C15H14N4O7·2C3H7NO·H2OZ = 2
Mr = 888.81F(000) = 932
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.208 (2) ÅCell parameters from 3010 reflections
b = 13.931 (2) Åθ = 3.3–26.3°
c = 14.537 (2) ŵ = 0.12 mm1
α = 62.405 (16)°T = 293 K
β = 74.412 (15)°Block, red
γ = 72.171 (16)°0.20 × 0.18 × 0.17 mm
V = 2062.1 (6) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
8436 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
SADABS(Bruker, 1998)
h = 1515
Tmin = 0.975, Tmax = 0.978k = 1717
15349 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.65 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
8417 reflections(Δ/σ)max = 0.001
578 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
2C15H14N4O7·2C3H7NO·H2Oγ = 72.171 (16)°
Mr = 888.81V = 2062.1 (6) Å3
Triclinic, P1Z = 2
a = 12.208 (2) ÅMo Kα radiation
b = 13.931 (2) ŵ = 0.12 mm1
c = 14.537 (2) ÅT = 293 K
α = 62.405 (16)°0.20 × 0.18 × 0.17 mm
β = 74.412 (15)°
Data collection top
Bruker SMART CCD area detector
diffractometer
8436 independent reflections
Absorption correction: multi-scan
SADABS(Bruker, 1998)
3010 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.978Rint = 0.028
15349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.65Δρmax = 0.14 e Å3
8417 reflectionsΔρmin = 0.15 e Å3
578 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.16438 (10)0.47386 (11)0.11183 (10)0.0624 (4)
O21.07317 (10)0.42369 (12)0.30577 (10)0.0659 (4)
H21.04190.42120.36410.099*
O30.85512 (10)0.51899 (11)0.36572 (10)0.0569 (4)
O40.60331 (12)0.98455 (12)0.26044 (10)0.0728 (4)
O50.43491 (13)1.08306 (14)0.29372 (12)0.0977 (6)
O60.10800 (11)1.07985 (13)0.03146 (13)0.0778 (5)
O70.13071 (12)0.99503 (14)0.13233 (14)0.0843 (5)
N10.69782 (12)0.77314 (13)0.01660 (11)0.0448 (4)
N20.63799 (12)0.84473 (12)0.06680 (12)0.0453 (4)
H2A0.67220.86120.13050.054*
N30.49985 (15)1.01377 (15)0.23198 (14)0.0577 (5)
N40.16778 (14)1.01869 (15)0.03847 (17)0.0588 (5)
C10.98729 (14)0.60679 (15)0.04999 (15)0.0424 (5)
H1B1.01920.62530.02030.051*
C21.05264 (15)0.52930 (16)0.12764 (16)0.0433 (5)
C31.00473 (15)0.50120 (16)0.23327 (15)0.0430 (5)
C40.89093 (15)0.55258 (16)0.25985 (16)0.0409 (5)
C50.82687 (14)0.62989 (15)0.18204 (15)0.0437 (5)
H5A0.75130.66450.19970.052*
C60.87395 (14)0.65703 (15)0.07682 (16)0.0389 (5)
C71.22460 (14)0.50572 (16)0.00683 (14)0.0530 (6)
H7B1.30250.46190.00710.079*
H7C1.22700.58270.02280.079*
H7D1.18470.49400.03450.079*
C80.73980 (15)0.56672 (18)0.39943 (15)0.0712 (7)
H8A0.72630.53850.47460.107*
H8B0.68530.54800.37680.107*
H8C0.73000.64580.36960.107*
C90.80494 (15)0.73386 (15)0.00621 (15)0.0446 (5)
H9A0.83910.75430.07610.053*
C100.52455 (15)0.88791 (15)0.04531 (15)0.0381 (5)
C110.45313 (15)0.96713 (16)0.12119 (15)0.0410 (5)
C120.33727 (15)1.00841 (16)0.09368 (16)0.0455 (5)
H12A0.29221.06000.14550.055*
C130.28912 (15)0.97383 (17)0.00874 (17)0.0455 (5)
C140.35523 (16)0.89655 (16)0.08688 (15)0.0516 (6)
H14A0.32160.87340.15710.062*
C150.46907 (16)0.85492 (16)0.06046 (15)0.0497 (5)
H15A0.51220.80290.11360.060*
O91.60110 (10)0.20303 (11)0.61612 (10)0.0575 (4)
O101.50993 (10)0.25838 (13)0.81097 (10)0.0650 (4)
H101.47250.27790.87020.098*
O111.27984 (10)0.19778 (11)0.87289 (10)0.0530 (4)
O121.00060 (11)0.22634 (13)0.25371 (10)0.0710 (5)
O130.83852 (12)0.34266 (12)0.22412 (10)0.0715 (4)
O140.56221 (14)0.28231 (17)0.65779 (15)0.1112 (7)
O150.53231 (12)0.36640 (14)0.49623 (14)0.0901 (6)
N61.11811 (12)0.05058 (12)0.52678 (11)0.0437 (4)
N71.05646 (11)0.12124 (12)0.44502 (11)0.0459 (4)
H71.08840.13690.38080.055*
N80.90520 (15)0.27239 (15)0.28452 (13)0.0508 (5)
N90.59430 (15)0.30440 (18)0.56430 (19)0.0734 (6)
C191.41392 (14)0.10112 (15)0.55671 (14)0.0421 (5)
H19A1.44590.08260.48650.051*
C201.48356 (15)0.16602 (16)0.63432 (15)0.0415 (5)
C211.43604 (15)0.19613 (16)0.73928 (15)0.0423 (5)
C221.31679 (15)0.16104 (15)0.76710 (15)0.0408 (5)
C231.24810 (14)0.09458 (15)0.69001 (15)0.0402 (5)
H23A1.16900.06980.70830.048*
C241.29642 (14)0.06399 (15)0.58421 (15)0.0368 (5)
C251.65080 (14)0.20819 (16)0.51718 (15)0.0559 (6)
H25A1.73140.24460.51810.084*
H25B1.64410.13440.46250.084*
H25C1.61020.24900.50450.084*
C261.15956 (15)0.16295 (17)0.90709 (15)0.0584 (6)
H26A1.14450.19540.98240.088*
H26B1.11330.18640.88050.088*
H26C1.13990.08360.88140.088*
C271.22455 (15)0.00984 (15)0.50237 (14)0.0420 (5)
H27A1.25630.02730.43220.050*
C280.94411 (15)0.16467 (16)0.46994 (15)0.0390 (5)
C290.86909 (15)0.24109 (16)0.39592 (15)0.0390 (5)
C300.75571 (15)0.28574 (16)0.42727 (16)0.0474 (5)
H30A0.70810.33640.37720.057*
C310.71345 (15)0.25594 (18)0.53100 (18)0.0513 (6)
C320.78217 (17)0.17783 (18)0.60649 (16)0.0591 (6)
H32A0.75160.15560.67740.071*
C330.89359 (15)0.13397 (17)0.57704 (15)0.0508 (6)
H33A0.93870.08200.62870.061*
O81.48326 (14)0.35737 (15)1.01517 (13)0.0855 (5)
N51.44236 (15)0.46103 (15)1.18764 (15)0.0591 (5)
C161.3621 (2)0.5215 (2)1.2721 (2)0.1249 (10)
H16A1.29580.51571.24490.187*
H16B1.33720.49101.32340.187*
H16C1.39990.59801.30430.187*
C171.55486 (19)0.4729 (2)1.20919 (19)0.1105 (10)
H17A1.59430.41961.15060.166*
H17B1.59960.54631.22060.166*
H17C1.54600.46061.27080.166*
C181.4189 (2)0.4036 (2)1.0903 (2)0.0687 (7)
H18A1.34540.39891.07960.082*
O161.05419 (13)0.35079 (13)0.50902 (12)0.0826 (5)
N100.99256 (16)0.27610 (16)0.68363 (15)0.0612 (5)
C341.0898 (2)0.18411 (19)0.70500 (18)0.0913 (8)
H34A1.12620.17470.64150.137*
H34B1.06360.11810.75640.137*
H34C1.14500.19780.73140.137*
C350.9053 (2)0.2821 (2)0.77290 (19)0.1047 (9)
H35A0.84390.34600.74870.157*
H35B0.94070.28770.82120.157*
H35C0.87390.21640.80750.157*
C360.9843 (2)0.3510 (2)0.5864 (2)0.0707 (7)
H36A0.91930.40900.57610.085*
O171.23621 (9)0.22474 (10)0.25040 (9)0.0597 (4)
H1A1.29790.22110.26860.090*
H1C1.19780.29000.23650.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (8)0.0772 (11)0.0370 (9)0.0134 (8)0.0032 (7)0.0168 (9)
O20.0507 (8)0.0798 (11)0.0380 (9)0.0137 (8)0.0100 (7)0.0156 (10)
O30.0440 (8)0.0741 (11)0.0346 (9)0.0035 (7)0.0039 (7)0.0189 (9)
O40.0555 (9)0.0804 (12)0.0404 (10)0.0060 (8)0.0022 (7)0.0082 (9)
O50.0738 (10)0.1211 (15)0.0393 (10)0.0138 (10)0.0209 (9)0.0002 (11)
O60.0493 (9)0.0871 (13)0.0820 (13)0.0085 (8)0.0174 (9)0.0330 (11)
O70.0625 (10)0.0978 (14)0.0652 (12)0.0032 (9)0.0150 (9)0.0332 (12)
N10.0419 (10)0.0443 (11)0.0397 (11)0.0020 (8)0.0161 (9)0.0097 (10)
N20.0404 (9)0.0488 (12)0.0312 (11)0.0001 (8)0.0078 (8)0.0083 (10)
N30.0542 (12)0.0635 (14)0.0365 (12)0.0017 (10)0.0117 (10)0.0094 (11)
N40.0455 (12)0.0585 (15)0.0683 (16)0.0062 (10)0.0046 (11)0.0280 (14)
C10.0436 (12)0.0486 (14)0.0311 (13)0.0077 (10)0.0064 (10)0.0142 (12)
C20.0359 (11)0.0488 (14)0.0389 (14)0.0008 (10)0.0063 (10)0.0188 (13)
C30.0422 (12)0.0444 (14)0.0349 (13)0.0011 (10)0.0124 (10)0.0130 (12)
C40.0388 (11)0.0487 (15)0.0340 (13)0.0072 (10)0.0044 (10)0.0179 (12)
C50.0365 (11)0.0480 (15)0.0435 (14)0.0026 (10)0.0076 (11)0.0195 (13)
C60.0336 (11)0.0401 (14)0.0409 (14)0.0003 (10)0.0124 (10)0.0163 (12)
C70.0444 (11)0.0678 (16)0.0413 (14)0.0075 (11)0.0025 (10)0.0258 (13)
C80.0540 (13)0.0950 (19)0.0485 (15)0.0000 (13)0.0054 (11)0.0334 (15)
C90.0430 (12)0.0485 (14)0.0386 (14)0.0045 (11)0.0092 (10)0.0167 (12)
C100.0392 (11)0.0372 (13)0.0341 (13)0.0046 (10)0.0078 (10)0.0128 (12)
C110.0430 (12)0.0443 (14)0.0306 (13)0.0080 (10)0.0068 (10)0.0115 (12)
C120.0400 (12)0.0489 (15)0.0434 (15)0.0004 (10)0.0139 (11)0.0173 (13)
C130.0366 (12)0.0496 (15)0.0467 (15)0.0030 (11)0.0049 (11)0.0216 (14)
C140.0527 (14)0.0576 (16)0.0340 (14)0.0092 (12)0.0003 (11)0.0156 (13)
C150.0528 (13)0.0512 (15)0.0309 (13)0.0022 (11)0.0095 (10)0.0091 (12)
O90.0345 (7)0.0843 (11)0.0371 (9)0.0035 (7)0.0047 (6)0.0219 (9)
O100.0462 (8)0.0904 (12)0.0355 (9)0.0015 (8)0.0110 (7)0.0146 (10)
O110.0453 (8)0.0658 (10)0.0300 (9)0.0042 (7)0.0024 (7)0.0117 (8)
O120.0437 (8)0.1124 (13)0.0389 (10)0.0004 (9)0.0037 (7)0.0280 (10)
O130.0695 (9)0.0791 (12)0.0399 (10)0.0023 (9)0.0239 (8)0.0033 (9)
O140.0760 (11)0.1595 (19)0.0773 (15)0.0073 (11)0.0125 (10)0.0650 (15)
O150.0479 (9)0.1076 (15)0.0949 (15)0.0140 (9)0.0156 (10)0.0420 (13)
N60.0382 (10)0.0495 (12)0.0339 (11)0.0018 (8)0.0139 (8)0.0097 (10)
N70.0376 (9)0.0596 (12)0.0304 (10)0.0008 (8)0.0094 (8)0.0140 (10)
N80.0471 (11)0.0634 (14)0.0379 (12)0.0126 (10)0.0128 (10)0.0138 (11)
N90.0451 (12)0.0926 (18)0.0819 (18)0.0003 (11)0.0031 (12)0.0485 (17)
C190.0411 (11)0.0454 (14)0.0293 (13)0.0067 (10)0.0038 (10)0.0092 (11)
C200.0325 (11)0.0481 (14)0.0368 (13)0.0051 (10)0.0034 (10)0.0149 (12)
C210.0367 (11)0.0501 (14)0.0338 (13)0.0006 (10)0.0131 (10)0.0135 (12)
C220.0423 (12)0.0454 (15)0.0280 (13)0.0087 (10)0.0007 (10)0.0127 (13)
C230.0314 (10)0.0441 (14)0.0383 (13)0.0062 (10)0.0057 (10)0.0124 (12)
C240.0352 (11)0.0392 (13)0.0319 (13)0.0050 (10)0.0081 (10)0.0114 (12)
C250.0450 (12)0.0618 (16)0.0493 (15)0.0032 (11)0.0013 (11)0.0233 (13)
C260.0482 (12)0.0751 (17)0.0421 (14)0.0094 (11)0.0052 (10)0.0251 (13)
C270.0417 (11)0.0457 (14)0.0340 (13)0.0074 (10)0.0061 (10)0.0136 (12)
C280.0355 (11)0.0485 (14)0.0321 (13)0.0095 (10)0.0084 (9)0.0139 (12)
C290.0383 (11)0.0485 (14)0.0294 (13)0.0103 (10)0.0048 (10)0.0150 (12)
C300.0399 (12)0.0474 (15)0.0498 (15)0.0004 (10)0.0163 (11)0.0168 (14)
C310.0344 (12)0.0663 (17)0.0533 (16)0.0037 (11)0.0024 (11)0.0315 (15)
C320.0510 (13)0.0859 (18)0.0380 (15)0.0095 (13)0.0034 (11)0.0286 (15)
C330.0426 (12)0.0713 (16)0.0314 (14)0.0082 (11)0.0075 (10)0.0169 (13)
O80.0799 (12)0.1070 (15)0.0471 (12)0.0114 (10)0.0173 (9)0.0147 (12)
N50.0610 (12)0.0592 (13)0.0424 (13)0.0091 (10)0.0074 (10)0.0115 (11)
C160.119 (2)0.104 (2)0.099 (2)0.047 (2)0.0239 (19)0.007 (2)
C170.0744 (17)0.162 (3)0.0693 (19)0.0021 (17)0.0319 (15)0.033 (2)
C180.0560 (16)0.083 (2)0.071 (2)0.0053 (14)0.0170 (15)0.0374 (19)
O160.0766 (11)0.0999 (14)0.0364 (10)0.0050 (10)0.0109 (8)0.0131 (10)
N100.0809 (13)0.0586 (14)0.0384 (13)0.0199 (11)0.0006 (11)0.0173 (12)
C340.1037 (19)0.085 (2)0.0574 (18)0.0015 (17)0.0343 (15)0.0085 (16)
C350.131 (2)0.095 (2)0.074 (2)0.0475 (18)0.0401 (18)0.0392 (19)
C360.0670 (16)0.0641 (19)0.062 (2)0.0025 (14)0.0107 (15)0.0177 (18)
O170.0451 (7)0.0630 (10)0.0647 (10)0.0003 (7)0.0195 (7)0.0226 (9)
Geometric parameters (Å, º) top
O1—C21.3641 (19)N7—C281.3440 (19)
O1—C71.4270 (19)N7—H70.8600
O2—C31.357 (2)N8—C291.445 (2)
O2—H20.8200N9—C311.459 (2)
O3—C41.369 (2)C19—C201.383 (2)
O3—C81.4220 (18)C19—C241.383 (2)
O4—N31.2217 (17)C19—H19A0.9300
O5—N31.2153 (18)C20—C211.386 (2)
O6—N41.2279 (19)C21—C221.397 (2)
O7—N41.232 (2)C22—C231.373 (2)
N1—C91.2714 (19)C23—C241.398 (2)
N1—N21.3813 (18)C23—H23A0.9300
N2—C101.3450 (19)C24—C271.455 (2)
N2—H2A0.8600C25—H25A0.9600
N3—C111.451 (2)C25—H25B0.9600
N4—C131.453 (2)C25—H25C0.9600
C1—C21.380 (2)C26—H26A0.9600
C1—C61.388 (2)C26—H26B0.9600
C1—H1B0.9300C26—H26C0.9600
C2—C31.398 (2)C27—H27A0.9300
C3—C41.397 (2)C28—C291.415 (2)
C4—C51.372 (2)C28—C331.420 (2)
C5—C61.392 (2)C29—C301.381 (2)
C5—H5A0.9300C30—C311.358 (2)
C6—C91.452 (2)C30—H30A0.9300
C7—H7B0.9600C31—C321.386 (3)
C7—H7C0.9600C32—C331.352 (2)
C7—H7D0.9600C32—H32A0.9300
C8—H8A0.9600C33—H33A0.9300
C8—H8B0.9600O8—C181.193 (2)
C8—H8C0.9600N5—C181.324 (3)
C9—H9A0.9300N5—C171.434 (2)
C10—C111.412 (2)N5—C161.441 (3)
C10—C151.418 (2)C16—H16A0.9600
C11—C121.379 (2)C16—H16B0.9600
C12—C131.354 (2)C16—H16C0.9600
C12—H12A0.9300C17—H17A0.9600
C13—C141.389 (2)C17—H17B0.9600
C14—C151.357 (2)C17—H17C0.9600
C14—H14A0.9300C18—H18A0.9300
C15—H15A0.9300O16—C361.216 (2)
O9—C201.3654 (18)N10—C361.320 (3)
O9—C251.4290 (18)N10—C341.431 (2)
O10—C211.3567 (19)N10—C351.459 (2)
O10—H100.8200C34—H34A0.9600
O11—C221.3674 (19)C34—H34B0.9600
O11—C261.4262 (18)C34—H34C0.9600
O12—N81.2236 (17)C35—H35A0.9600
O13—N81.2213 (17)C35—H35B0.9600
O14—N91.223 (2)C35—H35C0.9600
O15—N91.228 (2)C36—H36A0.9300
N6—C271.2743 (18)O17—H1A0.8434
N6—N71.3753 (17)O17—H1C0.8411
C2—O1—C7118.08 (15)O10—C21—C20117.24 (16)
C3—O2—H2109.5O10—C21—C22122.92 (17)
C4—O3—C8117.50 (14)C20—C21—C22119.83 (17)
C9—N1—N2116.51 (15)O11—C22—C23125.91 (17)
C10—N2—N1117.98 (15)O11—C22—C21114.44 (17)
C10—N2—H2A121.0C23—C22—C21119.65 (18)
N1—N2—H2A121.0C22—C23—C24120.34 (17)
O5—N3—O4121.83 (19)C22—C23—H23A119.8
O5—N3—C11118.69 (18)C24—C23—H23A119.8
O4—N3—C11119.45 (17)C19—C24—C23120.03 (17)
O6—N4—O7123.38 (18)C19—C24—C27119.58 (17)
O6—N4—C13118.2 (2)C23—C24—C27120.36 (16)
O7—N4—C13118.4 (2)O9—C25—H25A109.5
C2—C1—C6119.96 (17)O9—C25—H25B109.5
C2—C1—H1B120.0H25A—C25—H25B109.5
C6—C1—H1B120.0O9—C25—H25C109.5
O1—C2—C1125.71 (17)H25A—C25—H25C109.5
O1—C2—C3114.22 (17)H25B—C25—H25C109.5
C1—C2—C3120.06 (17)O11—C26—H26A109.5
O2—C3—C4123.09 (18)O11—C26—H26B109.5
O2—C3—C2117.15 (16)H26A—C26—H26B109.5
C4—C3—C2119.76 (18)O11—C26—H26C109.5
O3—C4—C5126.32 (17)H26A—C26—H26C109.5
O3—C4—C3113.97 (17)H26B—C26—H26C109.5
C5—C4—C3119.71 (18)N6—C27—C24120.03 (17)
C4—C5—C6120.61 (17)N6—C27—H27A120.0
C4—C5—H5A119.7C24—C27—H27A120.0
C6—C5—H5A119.7N7—C28—C29124.55 (17)
C1—C6—C5119.89 (18)N7—C28—C33119.76 (17)
C1—C6—C9118.85 (18)C29—C28—C33115.69 (16)
C5—C6—C9121.21 (17)C30—C29—C28121.36 (17)
O1—C7—H7B109.5C30—C29—N8116.69 (18)
O1—C7—H7C109.5C28—C29—N8121.89 (16)
H7B—C7—H7C109.5C31—C30—C29120.20 (19)
O1—C7—H7D109.5C31—C30—H30A119.9
H7B—C7—H7D109.5C29—C30—H30A119.9
H7C—C7—H7D109.5C30—C31—C32120.49 (18)
O3—C8—H8A109.5C30—C31—N9120.3 (2)
O3—C8—H8B109.5C32—C31—N9119.2 (2)
H8A—C8—H8B109.5C33—C32—C31119.96 (19)
O3—C8—H8C109.5C33—C32—H32A120.0
H8A—C8—H8C109.5C31—C32—H32A120.0
H8B—C8—H8C109.5C32—C33—C28122.20 (19)
N1—C9—C6120.06 (18)C32—C33—H33A118.9
N1—C9—H9A120.0C28—C33—H33A118.9
C6—C9—H9A120.0C18—N5—C17119.7 (2)
N2—C10—C11124.94 (17)C18—N5—C16122.0 (2)
N2—C10—C15119.70 (18)C17—N5—C16118.0 (2)
C11—C10—C15115.35 (17)N5—C16—H16A109.5
C12—C11—C10121.97 (18)N5—C16—H16B109.5
C12—C11—N3116.52 (18)H16A—C16—H16B109.5
C10—C11—N3121.43 (17)N5—C16—H16C109.5
C13—C12—C11119.99 (19)H16A—C16—H16C109.5
C13—C12—H12A120.0H16B—C16—H16C109.5
C11—C12—H12A120.0N5—C17—H17A109.5
C12—C13—C14120.62 (18)N5—C17—H17B109.5
C12—C13—N4120.3 (2)H17A—C17—H17B109.5
C14—C13—N4119.1 (2)N5—C17—H17C109.5
C15—C14—C13119.77 (18)H17A—C17—H17C109.5
C15—C14—H14A120.1H17B—C17—H17C109.5
C13—C14—H14A120.1O8—C18—N5126.1 (2)
C14—C15—C10122.29 (19)O8—C18—H18A116.9
C14—C15—H15A118.9N5—C18—H18A116.9
C10—C15—H15A118.9C36—N10—C34120.1 (2)
C20—O9—C25117.99 (13)C36—N10—C35122.7 (2)
C21—O10—H10109.5C34—N10—C35117.2 (2)
C22—O11—C26117.57 (14)N10—C34—H34A109.5
C27—N6—N7116.61 (15)N10—C34—H34B109.5
C28—N7—N6117.08 (15)H34A—C34—H34B109.5
C28—N7—H7121.5N10—C34—H34C109.5
N6—N7—H7121.5H34A—C34—H34C109.5
O13—N8—O12122.04 (17)H34B—C34—H34C109.5
O13—N8—C29118.88 (17)N10—C35—H35A109.5
O12—N8—C29119.07 (17)N10—C35—H35B109.5
O14—N9—O15123.7 (2)H35A—C35—H35B109.5
O14—N9—C31118.4 (2)N10—C35—H35C109.5
O15—N9—C31117.8 (2)H35A—C35—H35C109.5
C20—C19—C24119.60 (17)H35B—C35—H35C109.5
C20—C19—H19A120.2O16—C36—N10125.8 (2)
C24—C19—H19A120.2O16—C36—H36A117.1
O9—C20—C19124.59 (17)N10—C36—H36A117.1
O9—C20—C21114.87 (17)H1A—O17—H1C105.8
C19—C20—C21120.52 (17)
C9—N1—N2—C10179.87 (16)C25—O9—C20—C21159.79 (17)
C7—O1—C2—C17.0 (3)C24—C19—C20—O9176.94 (17)
C7—O1—C2—C3173.36 (15)C24—C19—C20—C211.5 (3)
C6—C1—C2—O1179.75 (17)O9—C20—C21—O100.4 (2)
C6—C1—C2—C30.1 (3)C19—C20—C21—O10178.96 (16)
O1—C2—C3—O20.3 (2)O9—C20—C21—C22178.79 (16)
C1—C2—C3—O2179.40 (16)C19—C20—C21—C220.2 (3)
O1—C2—C3—C4179.75 (16)C26—O11—C22—C231.1 (2)
C1—C2—C3—C40.6 (3)C26—O11—C22—C21178.48 (15)
C8—O3—C4—C51.2 (3)O10—C21—C22—O112.1 (3)
C8—O3—C4—C3179.48 (15)C20—C21—C22—O11178.75 (16)
O2—C3—C4—O31.0 (3)O10—C21—C22—C23177.47 (17)
C2—C3—C4—O3179.05 (16)C20—C21—C22—C231.7 (3)
O2—C3—C4—C5179.70 (17)O11—C22—C23—C24179.07 (17)
C2—C3—C4—C50.3 (3)C21—C22—C23—C241.4 (3)
O3—C4—C5—C6179.72 (17)C20—C19—C24—C231.8 (3)
C3—C4—C5—C60.5 (3)C20—C19—C24—C27176.25 (16)
C2—C1—C6—C50.6 (3)C22—C23—C24—C190.3 (3)
C2—C1—C6—C9176.73 (16)C22—C23—C24—C27177.67 (15)
C4—C5—C6—C10.9 (3)N7—N6—C27—C24178.82 (14)
C4—C5—C6—C9176.36 (16)C19—C24—C27—N6175.15 (18)
N2—N1—C9—C6179.34 (14)C23—C24—C27—N62.8 (2)
C1—C6—C9—N1173.56 (17)N6—N7—C28—C29178.06 (15)
C5—C6—C9—N13.8 (3)N6—N7—C28—C332.0 (2)
N1—N2—C10—C11176.00 (15)N7—C28—C29—C30177.35 (18)
N1—N2—C10—C153.2 (2)C33—C28—C29—C302.7 (2)
N2—C10—C11—C12179.73 (17)N7—C28—C29—N85.5 (3)
C15—C10—C11—C120.5 (2)C33—C28—C29—N8174.43 (16)
N2—C10—C11—N33.2 (3)O13—N8—C29—C306.2 (2)
C15—C10—C11—N3176.03 (16)O12—N8—C29—C30172.52 (16)
O5—N3—C11—C122.0 (3)O13—N8—C29—C28176.60 (16)
O4—N3—C11—C12176.30 (17)O12—N8—C29—C284.7 (3)
O5—N3—C11—C10178.76 (18)C28—C29—C30—C310.6 (3)
O4—N3—C11—C100.4 (3)N8—C29—C30—C31176.67 (17)
C10—C11—C12—C130.6 (3)C29—C30—C31—C322.1 (3)
N3—C11—C12—C13176.08 (16)C29—C30—C31—N9178.97 (17)
C11—C12—C13—C140.2 (3)O14—N9—C31—C30174.3 (2)
C11—C12—C13—N4178.68 (16)O15—N9—C31—C304.8 (3)
O6—N4—C13—C127.0 (3)O14—N9—C31—C326.8 (3)
O7—N4—C13—C12171.76 (19)O15—N9—C31—C32174.12 (19)
O6—N4—C13—C14174.10 (18)C30—C31—C32—C332.6 (3)
O7—N4—C13—C147.2 (3)N9—C31—C32—C33178.49 (19)
C12—C13—C14—C150.2 (3)C31—C32—C33—C280.3 (3)
N4—C13—C14—C15179.17 (18)N7—C28—C33—C32177.80 (18)
C13—C14—C15—C100.3 (3)C29—C28—C33—C322.2 (3)
N2—C10—C15—C14179.29 (17)C17—N5—C18—O80.9 (4)
C11—C10—C15—C140.0 (3)C16—N5—C18—O8175.0 (2)
C27—N6—N7—C28179.99 (17)C34—N10—C36—O160.5 (3)
C25—O9—C20—C1921.7 (2)C35—N10—C36—O16179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O160.821.892.610 (2)145
N2—H2A···O40.862.052.637 (2)125
N2—H2A···O17i0.862.403.1141 (19)140
O10—H10···O80.821.892.604 (2)145
O10—H10···O110.822.272.7030 (17)113
N7—H7···O120.862.062.642 (2)125
N7—H7···O170.862.393.118 (2)143
O17—H1A···O9ii0.842.222.9936 (16)153
O17—H1A···O10ii0.842.423.1042 (17)139
O17—H1C···O10.842.343.0790 (19)147
O17—H1C···O20.842.443.1811 (18)147
Symmetry codes: (i) x+2, y+1, z; (ii) x+3, y, z+1.

Experimental details

Crystal data
Chemical formula2C15H14N4O7·2C3H7NO·H2O
Mr888.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.208 (2), 13.931 (2), 14.537 (2)
α, β, γ (°)62.405 (16), 74.412 (15), 72.171 (16)
V3)2062.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
SADABS(Bruker, 1998)
Tmin, Tmax0.975, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15349, 8436, 3010
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 0.65
No. of reflections8417
No. of parameters578
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows(Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O160.821.892.610 (2)145.2
N2—H2A···O40.862.052.637 (2)125.1
N2—H2A···O17i0.862.403.1141 (19)140.1
O10—H10···O80.821.892.604 (2)144.6
O10—H10···O110.822.272.7030 (17)113.3
N7—H7···O120.862.062.642 (2)124.7
N7—H7···O170.862.393.118 (2)142.7
O17—H1A···O9ii0.842.222.9936 (16)152.8
O17—H1A···O10ii0.842.423.1042 (17)139.2
O17—H1C···O10.842.343.0790 (19)147.2
O17—H1C···O20.842.443.1811 (18)146.7
Symmetry codes: (i) x+2, y+1, z; (ii) x+3, y, z+1.
 

References

First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Kristallografiya, 48, 645–652.  Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243–249.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721–o3722.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds