organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-meth­­oxy-4-{[2-(4-nitro­phen­yl)hydrazinyl­­idene]meth­yl}benzoate

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China, bSchool of Chemistry and Biological Engineering, Guilin University of Technology, People's Republic of China, and cDepartment of Architectural Environment, and Energy Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: zhao_zhenxin@126.com

(Received 19 September 2010; accepted 23 September 2010; online 30 September 2010)

The mol­ecule of the title Schiff base compound, C16H15N3O5, obtained from a condensation reaction of 4-acet­oxy-3-meth­oxy­benzaldehyde and 4-nitro­phenyl­hydrazine, adopts an E geometry with respect to the C=N double bond. The mol­ecule is roughly planar, with the two benzene rings twisted slightly with respect to each other by a dihedral angle of 6.90 (9)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link centrosymmetrically related pairs of mol­ecules, forming dimers of R22(22) graph-set motif. The dimers are further connected through slipped ππ inter­actions between symmetry-related benzene rings [centroid–centroid distance of 3.646 (1) Å, offset angle of 15.4°].

Related literature

For potential applications of hydrazone derivatives, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For related structures, see: Szczesna & Urbanczyk-Lipkowska (2002[Szczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243-249]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721-o3722.]); Kuleshova et al. (2003[Kuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Crystallogr. Rep. 48, 594-601.]); Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O5

  • Mr = 329.31

  • Monoclinic, P 21 /c

  • a = 8.5983 (7) Å

  • b = 14.6982 (9) Å

  • c = 13.2096 (10) Å

  • β = 107.860 (9)°

  • V = 1589.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.628), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.976

  • 6773 measured reflections

  • 3255 independent reflections

  • 1397 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.072

  • S = 0.72

  • 3255 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 2.29 3.0068 (19) 141
Symmetry code: (i) -x+2, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.628), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.628), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As some phenylhydrazone derivatives show potential application in biochemistry(Okabe et al.,1993), phenylhydrazone has recently attracted our attention. In this paper, we report the synthesis and crystal structure of the title compound.

The molecule adopts an E geometry with respect to the C=N double bond (Fig. 1). The methoxybenzene and the nitrobenzene rings are roughly planar, with however the two benzene rings slightly twisted with respect to each other by a dihedral angle of 6.90 (9)°. The geometry within the hydrazone moiety agrees with related compound found in the literature (Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005; Kuleshova et al., 2003; Baughman et al., 2004.

Intermolecular N—H···O hydrogen bonds link the molecule two by two to form dimer (Table 1, Fig. 2) with R22(22) graph set motif (Etter et al., 1990); Bernstein et al., 1994). The dimers are connected through slippest π-π interactions involving the symmetry related (1-x, -y, -z) C1-C6 and C8-C13 benzene rings with a centroid to centroid distance of 3.646 (1)Å and an interplanar distance of 3.515Å resulting in an offset angle of 15.4°.

Related literature top

For potential applications of hydrazone derivatives, see: Okabe et al. (1993). For related structures, see: Szczesna & Urbanczyk-Lipkowska (2002); Zhen & Han (2005); Kuleshova et al. (2003); Baughman et al. (2004). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1994).

Experimental top

4-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, 4-acetoxy-3-methoxybenzaldehyde(1 mmol, 0.194 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimer through N-H···O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x+2, -y, -z]
Methyl 2-methoxy-4-{[2-(4-nitrophenyl)hydrazinylidene]methyl}benzoate top
Crystal data top
C16H15N3O5F(000) = 688
Mr = 329.31Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1694 reflections
a = 8.5983 (7) Åθ = 3.2–26.3°
b = 14.6982 (9) ŵ = 0.10 mm1
c = 13.2096 (10) ÅT = 293 K
β = 107.860 (9)°Block, red
V = 1589.0 (2) Å30.23 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.971, Tmax = 0.976k = 1518
6773 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.007
219 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H15N3O5V = 1589.0 (2) Å3
Mr = 329.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5983 (7) ŵ = 0.10 mm1
b = 14.6982 (9) ÅT = 293 K
c = 13.2096 (10) Å0.23 × 0.20 × 0.19 mm
β = 107.860 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1397 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.029
6773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.72Δρmax = 0.13 e Å3
3255 reflectionsΔρmin = 0.16 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3583 (2)0.28271 (10)0.40773 (12)0.0934 (5)
O20.41338 (19)0.17034 (10)0.51701 (12)0.0912 (5)
O30.94760 (16)0.07061 (8)0.28742 (9)0.0600 (4)
O40.84502 (16)0.09303 (8)0.37261 (9)0.0560 (4)
O51.10849 (17)0.12748 (8)0.29655 (11)0.0628 (4)
N10.66329 (16)0.00919 (9)0.15774 (11)0.0493 (4)
H10.69250.04610.17500.059*
N20.68044 (17)0.04452 (9)0.06596 (11)0.0451 (4)
N30.4121 (2)0.20643 (13)0.43252 (14)0.0649 (5)
C10.6057 (2)0.02353 (12)0.32125 (14)0.0522 (5)
H1B0.65040.03390.34080.063*
C20.5452 (2)0.07193 (13)0.38904 (14)0.0553 (5)
H2B0.54950.04780.45490.066*
C30.4777 (2)0.15662 (12)0.35965 (15)0.0468 (5)
C40.4691 (2)0.19305 (11)0.26147 (14)0.0495 (5)
H4A0.42150.24980.24160.059*
C50.5311 (2)0.14503 (11)0.19376 (14)0.0468 (5)
H5A0.52660.16960.12800.056*
C60.6006 (2)0.06010 (12)0.22253 (14)0.0417 (4)
C70.7483 (2)0.00733 (11)0.01437 (13)0.0452 (5)
H7A0.78060.06540.04030.054*
C80.7767 (2)0.02182 (11)0.08375 (13)0.0403 (4)
C90.85046 (19)0.03850 (11)0.13560 (13)0.0434 (5)
H9A0.88220.09560.10610.052*
C100.8777 (2)0.01552 (11)0.23029 (14)0.0434 (5)
C110.8294 (2)0.06963 (12)0.27239 (13)0.0449 (5)
C120.7565 (2)0.13013 (11)0.22286 (15)0.0518 (5)
H12A0.72460.18700.25280.062*
C130.7300 (2)0.10665 (11)0.12796 (15)0.0516 (5)
H13A0.68090.14790.09390.062*
C140.9936 (2)0.15954 (11)0.24715 (14)0.0632 (6)
H14A1.04190.19130.29350.095*
H14B0.89870.19200.24330.095*
H14C1.07140.15540.17740.095*
C150.9935 (3)0.12176 (12)0.37443 (17)0.0507 (5)
C160.9907 (3)0.14511 (15)0.48491 (15)0.0823 (7)
H16A0.90300.18680.51550.123*
H16B0.97480.09070.52710.123*
H16C1.09270.17280.48320.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1226 (15)0.0764 (11)0.0863 (11)0.0205 (11)0.0397 (10)0.0154 (10)
O20.1189 (14)0.1058 (12)0.0648 (10)0.0012 (10)0.0517 (10)0.0052 (9)
O30.0790 (10)0.0505 (7)0.0600 (9)0.0083 (7)0.0352 (8)0.0004 (7)
O40.0524 (9)0.0728 (9)0.0439 (8)0.0030 (8)0.0165 (7)0.0089 (7)
O50.0551 (9)0.0710 (9)0.0609 (9)0.0025 (8)0.0159 (8)0.0054 (8)
N10.0584 (11)0.0466 (9)0.0481 (10)0.0032 (8)0.0239 (9)0.0052 (8)
N20.0454 (10)0.0511 (9)0.0398 (9)0.0051 (8)0.0144 (8)0.0022 (8)
N30.0633 (13)0.0740 (13)0.0596 (13)0.0106 (11)0.0220 (11)0.0172 (11)
C10.0561 (14)0.0545 (11)0.0498 (12)0.0049 (10)0.0219 (11)0.0108 (10)
C20.0574 (14)0.0680 (13)0.0445 (12)0.0063 (11)0.0214 (11)0.0074 (11)
C30.0452 (13)0.0533 (12)0.0450 (12)0.0092 (10)0.0186 (10)0.0085 (10)
C40.0509 (14)0.0436 (11)0.0530 (12)0.0085 (10)0.0145 (11)0.0036 (10)
C50.0546 (13)0.0444 (11)0.0428 (11)0.0092 (10)0.0172 (10)0.0019 (9)
C60.0398 (11)0.0472 (11)0.0379 (11)0.0100 (9)0.0117 (9)0.0017 (9)
C70.0427 (13)0.0459 (11)0.0464 (12)0.0054 (10)0.0131 (10)0.0006 (9)
C80.0397 (12)0.0405 (10)0.0408 (11)0.0068 (9)0.0124 (10)0.0009 (9)
C90.0434 (13)0.0392 (10)0.0472 (12)0.0011 (9)0.0131 (10)0.0007 (9)
C100.0409 (12)0.0441 (11)0.0458 (12)0.0023 (10)0.0144 (10)0.0066 (10)
C110.0417 (12)0.0540 (12)0.0386 (11)0.0017 (10)0.0117 (10)0.0044 (10)
C120.0548 (13)0.0447 (11)0.0599 (13)0.0036 (10)0.0238 (11)0.0082 (10)
C130.0561 (13)0.0457 (11)0.0592 (13)0.0017 (10)0.0268 (11)0.0035 (10)
C140.0789 (16)0.0483 (11)0.0683 (14)0.0097 (11)0.0316 (13)0.0045 (11)
C150.0583 (14)0.0454 (11)0.0525 (13)0.0064 (11)0.0232 (12)0.0019 (10)
C160.0886 (18)0.1103 (17)0.0573 (14)0.0082 (15)0.0361 (13)0.0100 (13)
Geometric parameters (Å, º) top
O1—N31.2188 (18)C5—C61.386 (2)
O2—N31.2326 (18)C5—H5A0.9300
O3—C101.3655 (18)C7—C81.455 (2)
O3—C141.4210 (18)C7—H7A0.9300
O4—C151.352 (2)C8—C131.383 (2)
O4—C111.4135 (18)C8—C91.387 (2)
O5—C151.191 (2)C9—C101.383 (2)
N1—C61.3663 (18)C9—H9A0.9300
N1—N21.3678 (16)C10—C111.381 (2)
N1—H10.8600C11—C121.365 (2)
N2—C71.2766 (18)C12—C131.385 (2)
N3—C31.454 (2)C12—H12A0.9300
C1—C21.366 (2)C13—H13A0.9300
C1—C61.399 (2)C14—H14A0.9600
C1—H1B0.9300C14—H14B0.9600
C2—C31.378 (2)C14—H14C0.9600
C2—H2B0.9300C15—C161.492 (2)
C3—C41.384 (2)C16—H16A0.9600
C4—C51.369 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C10—O3—C14117.25 (13)C9—C8—C7118.60 (16)
C15—O4—C11117.01 (14)C10—C9—C8121.35 (16)
C6—N1—N2121.19 (14)C10—C9—H9A119.3
C6—N1—H1119.4C8—C9—H9A119.3
N2—N1—H1119.4O3—C10—C11116.35 (16)
C7—N2—N1115.96 (14)O3—C10—C9125.47 (16)
O1—N3—O2122.44 (18)C11—C10—C9118.18 (16)
O1—N3—C3118.54 (18)C12—C11—C10121.53 (17)
O2—N3—C3119.02 (19)C12—C11—O4118.68 (16)
C2—C1—C6120.11 (17)C10—C11—O4119.64 (16)
C2—C1—H1B119.9C11—C12—C13119.91 (16)
C6—C1—H1B119.9C11—C12—H12A120.0
C1—C2—C3119.87 (17)C13—C12—H12A120.0
C1—C2—H2B120.1C8—C13—C12120.00 (16)
C3—C2—H2B120.1C8—C13—H13A120.0
C2—C3—C4120.70 (17)C12—C13—H13A120.0
C2—C3—N3118.93 (18)O3—C14—H14A109.5
C4—C3—N3120.36 (18)O3—C14—H14B109.5
C5—C4—C3119.54 (17)H14A—C14—H14B109.5
C5—C4—H4A120.2O3—C14—H14C109.5
C3—C4—H4A120.2H14A—C14—H14C109.5
C4—C5—C6120.43 (16)H14B—C14—H14C109.5
C4—C5—H5A119.8O5—C15—O4123.01 (18)
C6—C5—H5A119.8O5—C15—C16126.1 (2)
N1—C6—C5122.77 (16)O4—C15—C16110.93 (19)
N1—C6—C1117.89 (16)C15—C16—H16A109.5
C5—C6—C1119.33 (17)C15—C16—H16B109.5
N2—C7—C8121.93 (16)H16A—C16—H16B109.5
N2—C7—H7A119.0C15—C16—H16C109.5
C8—C7—H7A119.0H16A—C16—H16C109.5
C13—C8—C9119.02 (16)H16B—C16—H16C109.5
C13—C8—C7122.37 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.293.0068 (19)141
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC16H15N3O5
Mr329.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5983 (7), 14.6982 (9), 13.2096 (10)
β (°) 107.860 (9)
V3)1589.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
6773, 3255, 1397
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 0.72
No. of reflections3255
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.293.0068 (19)140.7
Symmetry code: (i) x+2, y, z.
 

References

First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBruker (1998). SMART (Version 5.628), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Crystallogr. Rep. 48, 594–601.  Web of Science CrossRef CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem. 26, 243–249  Web of Science CSD CrossRef CAS Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721–o3722.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds