organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Butan-2-yl­­idene)furan-2-carbohydrazide

aDepartment of Architectural Environment, and Energy Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China, and cSchool of Chemistry and Biological Engineering, Guilin University of Technology, People's Republic of China
*Correspondence e-mail: zhao_zhenxin@126.com

(Received 19 September 2010; accepted 23 September 2010; online 30 September 2010)

The title Schiff base compound, C9H12N2O2, was obtained from a condensation reaction of butan-2-one and furan-2-carbohydrazide. The furan ring and the hydrazide fragment are roughly planar, the largest deviation from the mean plane being 0.069 (2)Å, but the butanyl­idene group is twisted slightly with respect to this plane by a dihedral angle of 5.2 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link pairs of inversion-related mol­ecules, forming dimers of R22(8) graph-set motif.

Related literature

For general properties of Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For related structures containing the furan-2-carbohydrazide fragment, see: Jing et al. (2007a[Jing, Z.-L., Yu, M. & Chen, X. (2007a). Acta Cryst. E63, o3899.],b[Jing, Z.-L., Yu, M. & Chen, X. (2007b). Acta Cryst. E63, o3992.]); Yao & Jing (2007[Yao, X.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o3900.]); Bakir & Gyles (2003[Bakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133-135.]); Tai et al. (2007a[Tai, X.-S., Hao, M.-Y. & Feng, Y.-M. (2007a). Acta Cryst. E63, o2267-o2268.],b[Tai, X.-S., Yin, J., Hao, M.-Y. & Liang, Z.-P. (2007b). Acta Cryst. E63, o2144-o2145.]); Zhou et al. (2007[Zhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898-o899.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590-o4591.]); Zhao et al. (2007[Zhao, Y.-L., Zhang, Q.-Z., Chen, X. & Yu, M. (2007). Acta Cryst. E63, o2952-o2953.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2

  • Mr = 180.21

  • Monoclinic, P 21 /c

  • a = 8.2664 (15) Å

  • b = 16.6687 (13) Å

  • c = 7.5396 (11) Å

  • β = 113.171 (19)°

  • V = 955.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 4182 measured reflections

  • 1955 independent reflections

  • 761 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.101

  • S = 0.74

  • 1955 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.16 2.981 (2) 160
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure of the title compound.

The molecular structure of (I) adopts an E conformation with respect to the C=N double bond (Fig.1). The furan ring and the the C5/N1/N2/C6 group are roughly planar with the largest deviation from the mean plane being 0.069 (2)Å but the butan C6/C7/C8/C9 group is slightly twisted with respect to this plane by a dihedral angle of 5.2 (3)°. Distances and bond angles within the furan and the hydrazide moiety agree with related structures found in the literature (Jing et al., 2007a,b; Yao & Jing, 2007; Bakir & Gyles, 2003; Tai et al., 2007a,b; Zhou et al., 2007; Butcher et al., 2007; Zhao et al., 2007.

Intermolecular N—H···O hydrogen bonds link the molecules two by two around inversion centers to form dimers with a R22(8) graph set motif (Etter et al., 1990; Bernstein et al., 1995) (Table 1, Fig. 2).

Related literature top

For general properties of Schiff bases, see: Kahwa et al. (1986); Santos et al. (2001). For related structures containing the furan-2-carbohydrazide fragment, see: Jing et al. (2007a,b); Yao & Jing (2007); Bakir & Gyles (2003); Tai et al. (2007a,b); Zhou et al. (2007); Butcher et al. (2007); Zhao et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Furan-2-carbohydrazine (1 mmol, 0.126 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, butan-2-one(1 mmol, 0.072 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), colorless single crystals of (I) was obtained after 3 d.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.93Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimer through N-H···O hydogen bonds shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
N'-(Butan-2-ylidene)furan-2-carbohydrazide top
Crystal data top
C9H12N2O2F(000) = 384
Mr = 180.21Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1520 reflections
a = 8.2664 (15) Åθ = 3.1–28.8°
b = 16.6687 (13) ŵ = 0.09 mm1
c = 7.5396 (11) ÅT = 293 K
β = 113.171 (19)°Block, colorless
V = 955.1 (2) Å30.21 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1955 independent reflections
Radiation source: fine-focus sealed tube761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 119
Tmin = 0.978, Tmax = 0.982k = 1821
4182 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max = 0.003
120 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H12N2O2V = 955.1 (2) Å3
Mr = 180.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2664 (15) ŵ = 0.09 mm1
b = 16.6687 (13) ÅT = 293 K
c = 7.5396 (11) Å0.21 × 0.19 × 0.17 mm
β = 113.171 (19)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
761 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.040
4182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.74Δρmax = 0.17 e Å3
1955 reflectionsΔρmin = 0.17 e Å3
120 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4993 (2)0.32297 (8)0.4042 (2)0.0598 (5)
O20.4694 (2)0.41298 (8)0.1056 (2)0.0670 (6)
N10.6592 (3)0.50672 (9)0.2784 (3)0.0511 (6)
H10.64970.53140.17460.061*
N20.7678 (3)0.53804 (11)0.4554 (3)0.0505 (6)
C10.5264 (4)0.29006 (14)0.5768 (4)0.0586 (8)
H1B0.48000.24110.59320.070*
C20.6274 (4)0.33618 (14)0.7195 (4)0.0638 (8)
H2B0.66410.32620.85090.077*
C30.6686 (3)0.40406 (13)0.6316 (4)0.0582 (7)
H3A0.73830.44730.69560.070*
C40.5899 (3)0.39476 (11)0.4416 (3)0.0437 (6)
C50.5674 (3)0.43790 (12)0.2653 (3)0.0473 (7)
C60.8540 (3)0.60130 (13)0.4535 (3)0.0502 (7)
C70.9668 (4)0.63698 (13)0.6436 (4)0.0669 (8)
H7A0.93020.69210.64570.080*
H7B1.08720.63810.65290.080*
C80.9648 (4)0.59519 (17)0.8197 (4)0.0933 (10)
H8A1.03430.62510.93290.140*
H8B1.01280.54220.82780.140*
H8C0.84590.59160.81080.140*
C90.8539 (4)0.64420 (13)0.2796 (4)0.0806 (10)
H9A0.84470.60590.18100.121*
H9B0.96130.67400.31340.121*
H9C0.75570.68030.23250.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0962 (15)0.0377 (8)0.0454 (11)0.0067 (9)0.0276 (10)0.0008 (7)
O20.1069 (16)0.0467 (9)0.0373 (11)0.0157 (9)0.0174 (11)0.0023 (8)
N10.0748 (15)0.0400 (10)0.0386 (12)0.0059 (11)0.0224 (11)0.0015 (9)
N20.0599 (15)0.0458 (11)0.0440 (13)0.0015 (10)0.0186 (11)0.0015 (9)
C10.085 (2)0.0456 (13)0.0495 (18)0.0007 (14)0.0312 (16)0.0107 (12)
C20.077 (2)0.0659 (16)0.0435 (17)0.0090 (15)0.0182 (16)0.0110 (13)
C30.067 (2)0.0543 (14)0.0472 (17)0.0152 (13)0.0155 (15)0.0028 (12)
C40.0572 (18)0.0318 (12)0.0431 (15)0.0011 (11)0.0208 (13)0.0017 (10)
C50.0661 (19)0.0369 (13)0.0406 (16)0.0038 (13)0.0228 (15)0.0010 (11)
C60.0518 (18)0.0415 (13)0.0561 (17)0.0021 (13)0.0199 (14)0.0008 (11)
C70.060 (2)0.0655 (16)0.069 (2)0.0095 (14)0.0184 (17)0.0050 (14)
C80.092 (3)0.123 (2)0.059 (2)0.0321 (19)0.0227 (18)0.0138 (18)
C90.101 (3)0.0641 (17)0.075 (2)0.0200 (16)0.0328 (19)0.0117 (14)
Geometric parameters (Å, º) top
O1—C11.347 (2)C4—C51.457 (3)
O1—C41.381 (2)C6—C71.492 (3)
O2—C51.229 (2)C6—C91.493 (3)
N1—C51.357 (3)C7—C81.505 (3)
N1—N21.384 (2)C7—H7A0.9700
N1—H10.8600C7—H7B0.9700
N2—C61.276 (3)C8—H8A0.9600
C1—C21.319 (3)C8—H8B0.9600
C1—H1B0.9300C8—H8C0.9600
C2—C31.419 (3)C9—H9A0.9600
C2—H2B0.9300C9—H9B0.9600
C3—C41.329 (3)C9—H9C0.9600
C3—H3A0.9300
C1—O1—C4106.56 (17)N2—C6—C9126.8 (2)
C5—N1—N2121.40 (19)C7—C6—C9115.9 (2)
C5—N1—H1119.3C6—C7—C8116.3 (2)
N2—N1—H1119.3C6—C7—H7A108.2
C6—N2—N1117.00 (19)C8—C7—H7A108.2
C2—C1—O1111.2 (2)C6—C7—H7B108.2
C2—C1—H1B124.4C8—C7—H7B108.2
O1—C1—H1B124.4H7A—C7—H7B107.4
C1—C2—C3106.0 (2)C7—C8—H8A109.5
C1—C2—H2B127.0C7—C8—H8B109.5
C3—C2—H2B127.0H8A—C8—H8B109.5
C4—C3—C2107.7 (2)C7—C8—H8C109.5
C4—C3—H3A126.1H8A—C8—H8C109.5
C2—C3—H3A126.1H8B—C8—H8C109.5
C3—C4—O1108.49 (19)C6—C9—H9A109.5
C3—C4—C5139.3 (2)C6—C9—H9B109.5
O1—C4—C5112.16 (19)H9A—C9—H9B109.5
O2—C5—N1119.4 (2)C6—C9—H9C109.5
O2—C5—C4121.6 (2)H9A—C9—H9C109.5
N1—C5—C4118.9 (2)H9B—C9—H9C109.5
N2—C6—C7117.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.162.981 (2)160
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O2
Mr180.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2664 (15), 16.6687 (13), 7.5396 (11)
β (°) 113.171 (19)
V3)955.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4182, 1955, 761
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 0.74
No. of reflections1955
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.162.981 (2)160.0
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590–o4591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007a). Acta Cryst. E63, o3899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007b). Acta Cryst. E63, o3992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Hao, M.-Y. & Feng, Y.-M. (2007a). Acta Cryst. E63, o2267–o2268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Yin, J., Hao, M.-Y. & Liang, Z.-P. (2007b). Acta Cryst. E63, o2144–o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYao, X.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o3900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Y.-L., Zhang, Q.-Z., Chen, X. & Yu, M. (2007). Acta Cryst. E63, o2952–o2953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898–o899.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds