organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Iso­propyl-N-phenyl­cyclo­hexa-1,3-diene-1-carboxamide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: shangsb@hotmail.com

(Received 24 August 2010; accepted 30 August 2010; online 4 September 2010)

In the crystal structure of the title compound, C16H19NO, mol­ecules are linked through a pair of N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

The title compound was obtained by reaction of dihydrocumic acid, obtained from nopinic acid through dehydration, and aniline. For the preparation and structure of nopinic acid, see: Ma et al. (2007[Ma, S. Y., Shen, M. M. & Ha, C. Y. (2007). Chem. Ind. For. Prod. 27, 114-116.]); Gao et al. (2009[Gao, Y.-Q., Shang, S.-B., Xu, X., Rao, X.-P. & Wang, H.-X. (2009). Acta Cryst. E65, o2748.]). For the preparation of dihydro­cumic acid, see: Jin & Ha (2006[Jin, J. Z. & Ha, C. Y. (2006). Chem. Ind. For. Prod. 26, 27-30.]) For oxidation of β-pinene, see: Winstein & Holness (1955[Winstein, S. & Holness, N. J. (1955). J. Am. Chem. Soc. 77, 3054-3061.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO

  • Mr = 241.32

  • Triclinic, [P \overline 1]

  • a = 5.226 (1) Å

  • b = 9.783 (2) Å

  • c = 13.810 (3) Å

  • α = 88.31 (3)°

  • β = 88.01 (3)°

  • γ = 76.13 (2)°

  • V = 684.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.979, Tmax = 0.986

  • 2789 measured reflections

  • 2491 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.175

  • S = 1.01

  • 2491 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 2.27 3.054 (2) 151
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nopinic acid is an important material prepared by oxidation of beta-pinene (Ma, 2007),and the crystal structure of nopinic acid has been reported (Gao,2009). From nopinic acid, dihydrocumic acid was obtained through dehydration. The title compound was got by reaction of dihydrocumic acid and aniline. In this work, we describe the crystal structure of the title compound. The asymmetric unit consists of one crystallographically independent molecule. The independent molecules are linked through a pair of N–H···O hydrogen bonds forming a polymer.

The molecular structure is shown in Fig. 1 and the crystal packing in Fig. 2, where the dash line indicates N–H···O hydrogen bonds. The bond lengths and angles are given in Table 1.

Related literature top

For the preparation of nopinic acid, see: Ma et al. (2007); Gao et al. (2009). For the preparation of dihydrocumic acid, see: Jin et al. (2006) For related literature [on what subject?], see: Winstein & Holness (1955).

Experimental top

Dihydrocumic acid was (5.0 g) was dissolved in dichlomethane(100 ml) while stirring vigorously, thionyl chloride(6.6 ml) was dropped. The reaction was maintained during 6 h at the temperature of reflux. After removing dichlomethane and redundant thionyl chloride, the carboxylic acid chloride was obtained, which was then dropped in a mixture of dichlomethane(100 ml),triethylamine(6.1 ml) and aniline(5.6 g). The reaction was stayed over at room temperature. After reagent was romoved, the crude product was crystallized with ethanol, then the title conpound was gained. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of ethanol. The crystal data were collected on an Enraf–Nonius CAD-4 difractometer. Data collection and cell refinement were performed using Enraf–Nonius CAD-4 Software.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.96–0.98 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. H atoms bonded to the N atoms were fixed.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound.
4-Isopropyl-N-phenylcyclohexa-1,3-diene-1-carboxamide top
Crystal data top
C16H19NOZ = 2
Mr = 241.32F(000) = 260
Triclinic, P1Dx = 1.170 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.226 (1) ÅCell parameters from 25 reflections
b = 9.783 (2) Åθ = 9–13°
c = 13.810 (3) ŵ = 0.07 mm1
α = 88.31 (3)°T = 293 K
β = 88.01 (3)°Rod, colourless
γ = 76.13 (2)°0.30 × 0.20 × 0.20 mm
V = 684.9 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.979, Tmax = 0.986l = 1616
2789 measured reflections3 standard reflections every 200 reflections
2491 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.1P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.24 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (14)
Crystal data top
C16H19NOγ = 76.13 (2)°
Mr = 241.32V = 684.9 (2) Å3
Triclinic, P1Z = 2
a = 5.226 (1) ÅMo Kα radiation
b = 9.783 (2) ŵ = 0.07 mm1
c = 13.810 (3) ÅT = 293 K
α = 88.31 (3)°0.30 × 0.20 × 0.20 mm
β = 88.01 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1901 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.979, Tmax = 0.9863 standard reflections every 200 reflections
2789 measured reflections intensity decay: 1%
2491 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2491 reflectionsΔρmin = 0.22 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2449 (3)0.16425 (18)0.09778 (11)0.0458 (4)
H0A0.39530.16480.07060.055*
O0.1955 (3)0.2062 (2)0.07382 (11)0.0737 (6)
C10.3023 (9)0.3380 (4)0.4181 (2)0.1092 (13)
H1A0.24220.25250.41600.164*
H1B0.48550.31710.40260.164*
H1C0.27960.38000.48180.164*
C20.2353 (6)0.5737 (3)0.3466 (2)0.0852 (9)
H2A0.23770.61000.41190.128*
H2B0.40930.55600.32130.128*
H2C0.11620.64140.30720.128*
C30.1450 (5)0.4384 (3)0.34559 (17)0.0661 (7)
H3A0.03700.46290.36750.079*
C40.1360 (4)0.3777 (2)0.24416 (15)0.0524 (6)
C50.2943 (5)0.2582 (2)0.21217 (15)0.0574 (6)
H5A0.41780.20470.25470.069*
C60.2776 (4)0.2095 (2)0.11182 (15)0.0524 (5)
H6A0.41380.13910.08720.063*
C70.0686 (4)0.2651 (2)0.05479 (14)0.0459 (5)
C80.1475 (5)0.3782 (3)0.09523 (18)0.0720 (8)
H8A0.23050.44000.04360.086*
H8B0.28000.33590.12110.086*
C90.0495 (6)0.4630 (3)0.17347 (19)0.0803 (9)
H9A0.19930.51860.20780.096*
H9B0.03750.52770.14390.096*
C100.0261 (4)0.2093 (2)0.04320 (14)0.0479 (5)
C110.2431 (3)0.1169 (2)0.19526 (13)0.0421 (5)
C120.4082 (4)0.1589 (2)0.25855 (15)0.0504 (5)
H12A0.51930.21490.23600.061*
C130.4081 (5)0.1179 (3)0.35443 (16)0.0610 (6)
H13A0.51830.14710.39660.073*
C140.2471 (5)0.0344 (3)0.38850 (17)0.0670 (7)
H14A0.24480.00820.45380.080*
C150.0880 (5)0.0104 (3)0.32473 (19)0.0678 (7)
H15A0.01840.06910.34710.081*
C160.0850 (4)0.0304 (2)0.22861 (16)0.0552 (6)
H16A0.02330.00010.18630.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0335 (8)0.0635 (11)0.0401 (9)0.0120 (7)0.0014 (7)0.0048 (7)
O0.0374 (8)0.1279 (16)0.0576 (10)0.0258 (9)0.0067 (7)0.0244 (10)
C10.194 (4)0.089 (2)0.0460 (15)0.040 (2)0.0213 (19)0.0009 (14)
C20.098 (2)0.0749 (18)0.086 (2)0.0294 (16)0.0137 (16)0.0103 (15)
C30.0751 (16)0.0754 (16)0.0517 (13)0.0268 (13)0.0054 (11)0.0128 (12)
C40.0595 (13)0.0566 (13)0.0453 (12)0.0216 (11)0.0079 (9)0.0018 (9)
C50.0653 (14)0.0595 (13)0.0444 (12)0.0104 (11)0.0073 (10)0.0029 (10)
C60.0548 (12)0.0554 (12)0.0449 (11)0.0095 (10)0.0012 (9)0.0025 (9)
C70.0401 (10)0.0592 (12)0.0409 (11)0.0160 (9)0.0077 (8)0.0010 (9)
C80.0486 (13)0.101 (2)0.0571 (14)0.0021 (13)0.0023 (10)0.0125 (13)
C90.0794 (18)0.0831 (19)0.0611 (15)0.0122 (15)0.0004 (13)0.0152 (13)
C100.0378 (11)0.0647 (13)0.0420 (11)0.0137 (9)0.0035 (8)0.0012 (9)
C110.0331 (9)0.0500 (11)0.0400 (10)0.0036 (8)0.0006 (7)0.0009 (8)
C120.0420 (11)0.0614 (13)0.0483 (12)0.0132 (9)0.0048 (9)0.0024 (10)
C130.0540 (13)0.0807 (16)0.0450 (12)0.0084 (12)0.0103 (10)0.0001 (11)
C140.0555 (14)0.0907 (18)0.0456 (12)0.0021 (13)0.0013 (10)0.0171 (12)
C150.0517 (13)0.0821 (17)0.0687 (16)0.0180 (12)0.0009 (11)0.0259 (13)
C160.0451 (11)0.0649 (14)0.0581 (13)0.0180 (10)0.0079 (9)0.0090 (11)
Geometric parameters (Å, º) top
N—C101.367 (2)C6—H6A0.9300
N—C111.411 (2)C7—C101.474 (3)
N—H0A0.8600C7—C81.490 (3)
O—C101.226 (2)C8—C91.494 (4)
C1—C31.502 (4)C8—H8A0.9700
C1—H1A0.9600C8—H8B0.9700
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—C31.507 (4)C11—C161.377 (3)
C2—H2A0.9600C11—C121.386 (3)
C2—H2B0.9600C12—C131.372 (3)
C2—H2C0.9600C12—H12A0.9300
C3—C41.509 (3)C13—C141.370 (4)
C3—H3A0.9800C13—H13A0.9300
C4—C51.333 (3)C14—C151.381 (4)
C4—C91.478 (4)C14—H14A0.9300
C5—C61.458 (3)C15—C161.374 (3)
C5—H5A0.9300C15—H15A0.9300
C6—C71.338 (3)C16—H16A0.9300
C10—N—C11125.04 (16)C7—C8—C9112.09 (19)
C10—N—H0A117.5C7—C8—H8A109.2
C11—N—H0A117.5C9—C8—H8A109.2
C3—C1—H1A109.5C7—C8—H8B109.2
C3—C1—H1B109.5C9—C8—H8B109.2
H1A—C1—H1B109.5H8A—C8—H8B107.9
C3—C1—H1C109.5C4—C9—C8114.0 (2)
H1A—C1—H1C109.5C4—C9—H9A108.7
H1B—C1—H1C109.5C8—C9—H9A108.7
C3—C2—H2A109.5C4—C9—H9B108.7
C3—C2—H2B109.5C8—C9—H9B108.7
H2A—C2—H2B109.5H9A—C9—H9B107.6
C3—C2—H2C109.5O—C10—N122.39 (18)
H2A—C2—H2C109.5O—C10—C7121.11 (18)
H2B—C2—H2C109.5N—C10—C7116.49 (16)
C1—C3—C2110.9 (2)C16—C11—C12119.56 (18)
C1—C3—C4114.6 (2)C16—C11—N122.18 (18)
C2—C3—C4111.5 (2)C12—C11—N118.26 (17)
C1—C3—H3A106.5C13—C12—C11120.2 (2)
C2—C3—H3A106.5C13—C12—H12A119.9
C4—C3—H3A106.5C11—C12—H12A119.9
C5—C4—C9117.8 (2)C14—C13—C12120.5 (2)
C5—C4—C3125.0 (2)C14—C13—H13A119.7
C9—C4—C3117.1 (2)C12—C13—H13A119.7
C4—C5—C6121.3 (2)C13—C14—C15119.2 (2)
C4—C5—H5A119.3C13—C14—H14A120.4
C6—C5—H5A119.3C15—C14—H14A120.4
C7—C6—C5120.8 (2)C16—C15—C14120.9 (2)
C7—C6—H6A119.6C16—C15—H15A119.6
C5—C6—H6A119.6C14—C15—H15A119.6
C6—C7—C10123.12 (19)C15—C16—C11119.6 (2)
C6—C7—C8118.97 (19)C15—C16—H16A120.2
C10—C7—C8117.54 (18)C11—C16—H16A120.2
C1—C3—C4—C514.4 (4)C11—N—C10—C7175.31 (18)
C2—C3—C4—C5112.5 (3)C6—C7—C10—O142.6 (2)
C1—C3—C4—C9170.4 (3)C8—C7—C10—O30.4 (3)
C2—C3—C4—C962.7 (3)C6—C7—C10—N38.6 (3)
C9—C4—C5—C62.7 (3)C8—C7—C10—N148.4 (2)
C3—C4—C5—C6177.9 (2)C10—N—C11—C1641.7 (3)
C4—C5—C6—C714.9 (3)C10—N—C11—C12138.7 (2)
C5—C6—C7—C10172.7 (2)C16—C11—C12—C131.9 (3)
C5—C6—C7—C80.2 (3)N—C11—C12—C13178.47 (19)
C6—C7—C8—C929.0 (3)C11—C12—C13—C140.5 (3)
C10—C7—C8—C9157.8 (2)C12—C13—C14—C151.2 (4)
C5—C4—C9—C832.6 (3)C13—C14—C15—C161.6 (4)
C3—C4—C9—C8151.8 (2)C14—C15—C16—C110.2 (4)
C7—C8—C9—C444.7 (3)C12—C11—C16—C151.5 (3)
C11—N—C10—O3.5 (3)N—C11—C16—C15178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.273.054 (2)151
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H19NO
Mr241.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.226 (1), 9.783 (2), 13.810 (3)
α, β, γ (°)88.31 (3), 88.01 (3), 76.13 (2)
V3)684.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
2789, 2491, 1901
Rint0.013
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.01
No. of reflections2491
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.273.054 (2)151
Symmetry code: (i) x+1, y, z.
 

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGao, Y.-Q., Shang, S.-B., Xu, X., Rao, X.-P. & Wang, H.-X. (2009). Acta Cryst. E65, o2748.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJin, J. Z. & Ha, C. Y. (2006). Chem. Ind. For. Prod. 26, 27–30.  CAS Google Scholar
First citationMa, S. Y., Shen, M. M. & Ha, C. Y. (2007). Chem. Ind. For. Prod. 27, 114–116.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinstein, S. & Holness, N. J. (1955). J. Am. Chem. Soc. 77, 3054–3061.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds