organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4,4-dioxo-N-phenyl-5,6-di­hydro-1,4-oxathiine-3-carboxamide (Oxycarboxin)

aDepartment of Chemistry, Truman State University, Kirksville, MO 63501-4221, USA
*Correspondence e-mail: baughman@truman.edu

(Received 3 June 2010; accepted 20 September 2010; online 30 September 2010)

In the title compound, C12H13NO4S, a systemic fungicide, the heterocycle adopts a lounge chair conformation and the dihedral angle between the ring planes is 25.8 (2)°. Inter­molecular C—H⋯O hydrogen bonds are noted in the crystal structure. Also observed is a short inter­action of a methyl­ene hydrogen atom with the π-electron system of a phenyl ring in an adjacent mol­ecule.

Related literature

The title structure was determined as part of a larger project involving the structures of fungicides, see: Baughman & Paulos (2005[Baughman, R. G. & Paulos, C. M. (2005). Acta Cryst. E61, o2352-o2353.]). For the mode of biological action of the title compound, see: Ulrich & Mathre (1972[Ulrich, J. T. & Mathre, D. E. (1972). J. Bacteriol. 100, 628-632.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO4S

  • Mr = 267.29

  • Triclinic, [P \overline 1]

  • a = 5.9985 (4) Å

  • b = 8.3178 (6) Å

  • c = 13.1333 (8) Å

  • α = 104.702 (4)°

  • β = 93.180 (5)°

  • γ = 106.876 (5)°

  • V = 600.59 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.54 × 0.44 × 0.16 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: integration (XSHELL; Bruker, 1999[Bruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.959

  • 2152 measured reflections

  • 2152 independent reflections

  • 1884 reflections with I > 2σ(I)

  • 3 standard reflections every 100 reflections intensity decay: 1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.17

  • 2152 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.09 2.819 (4) 142
C2—H2B⋯O2i 0.97 2.50 3.274 (5) 137
C5—H5A⋯O4ii 0.96 2.52 3.422 (6) 157
C9—H9⋯O4iii 0.93 2.49 3.419 (5) 175
C1—H1CCgiv 0.97 2.82 3.645 144
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y+1, z.

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC, SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of 2,3-dihydro-5-carboxanilide-6-methyl-1,4-oxathiin-4,4-dioxide (oxycarboxin, also known as PlantvaxR) was determined as part of a larger project involving the structures of fungicides (Baughman & Paulos, 2005). It is the dioxide form of its parent compound, carboxin, and is a member of the oxathiin class of systemic (works from within the plant system) fungicides. The mode of action of this class of compounds is to inhibit succinate oxidation of succinate dehydrogenase in the fungal class Basiomycetes (Ulrich & Mathre, 1972).

The molecules of the title structure (Fig. 1) are interconnected by intermolecular hydrogen bonds, while the molecule itself contains intramolecular hydrogen bonds (Tab. 1). The N1—H1A···O3—S1 and the C8—H8···O4—C6 intramolecular hydrogen bonds restrict all of the torsion angles around the N1—C6, N1—C7, and C3—C6 bonds. H1C is observed to be interacting with the π-electron system of the adjacent phenyl ring at 1 + x, 1 + y, z (Fig. 1, Tab. 1).

The C1//C2//S1//C3//C4//O1 ring is nonplanar; C1 and C2 are located +0.435 (6) and -0.398 (6) Å, respectively, from the 4-membered planar S1//C3//C4//O4 group, which has an r.m.s. deviation from the mean plane equal to 0.030 Å.

Related literature top

The title structure was determined as part of a larger project involving the structures of fungicides, see: Baughman & Paulos (2005). For the mode of biological action of the title compound, see: Ulrich & Mathre (1972).

Experimental top

A 99.9% pure sample of the title compound was purchased from Sigma-Aldrich. Crystals were grown by slow evaporation of a solution in EtOH.

Refinement top

Approximate positions for all H atoms were first obtained from a difference electron density map. However, the hydrogens were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The constraints used: Caryl-Haryl=0.93; Cmethyl-Hmethyl=0.96; Cmethylene-Hmethylene=0.97 and Nsec. amine—Hsec. amine=0.86 Å. The idealized methyl group was allowed to rotate about the C—C bond during the refinement [AFIX 137; SHELXL97 (Sheldrick, 2008)]. Uiso(Hmethyl)=1.5Ueq(Cmethyl) or Uiso(Haryl/methylene/N)=1.2Ueq(Caryl/methylene/N).

PLATON (Spek, 1999) indicated the presence of a possible twin by reticular non-merohedry or accidental intergrowth and suggested the twinning matrix that corresponded to the rotation by 180° about the direction [1 2 4] quasiperpendicular to (0 0 1): (h2,k2,l2)=(h1,k1,l1)× (-1.000,0.000,0.618//0.000,-1.000,0.931//0.000,0.000,1.000). The number of the overlapped reflections equals to 366. The minor-domain fraction was refined to 0.083 (5).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule showing the labeling of the non-H atoms. The displacement ellipsoids are drawn at the 50% probability levels; the H atoms are drawn as small spheres of arbitrary radius. Intramolecular hydrogen bonds involving H1a and H8 are indicated by dashed lines.
2-methyl-4,4-dioxo-N-phenyl-5,6-dihydro-1,4-oxathiine-3-carboxamide top
Crystal data top
C12H13NO4SZ = 2
Mr = 267.29F(000) = 280
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9985 (4) ÅCell parameters from 100 reflections
b = 8.3178 (6) Åθ = 10.7–18.8°
c = 13.1333 (8) ŵ = 0.28 mm1
α = 104.702 (4)°T = 295 K
β = 93.180 (5)°Parrallelepiped, colorless
γ = 106.876 (5)°0.54 × 0.44 × 0.16 mm
V = 600.59 (7) Å3
Data collection top
Bruker P4
diffractometer
1884 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.7°
θ/2θ scansh = 77
Absorption correction: integration
(XSHELL; Bruker, 1999)
k = 99
Tmin = 0.888, Tmax = 0.959l = 715
2152 measured reflections3 standard reflections every 100 reflections
2152 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.148H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.2476P]
where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.30 e Å3
51 constraints
Crystal data top
C12H13NO4Sγ = 106.876 (5)°
Mr = 267.29V = 600.59 (7) Å3
Triclinic, P1Z = 2
a = 5.9985 (4) ÅMo Kα radiation
b = 8.3178 (6) ŵ = 0.28 mm1
c = 13.1333 (8) ÅT = 295 K
α = 104.702 (4)°0.54 × 0.44 × 0.16 mm
β = 93.180 (5)°
Data collection top
Bruker P4
diffractometer
1884 reflections with I > 2σ(I)
Absorption correction: integration
(XSHELL; Bruker, 1999)
Rint = 0.000
Tmin = 0.888, Tmax = 0.9593 standard reflections every 100 reflections
2152 measured reflections intensity decay: 1.2%
2152 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.17Δρmax = 0.26 e Å3
2152 reflectionsΔρmin = 0.30 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor, wR, and goodness of fit, S, are based on F2, conventional R-factors, R, are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86650 (16)0.76152 (12)0.09237 (7)0.0340 (3)
O11.3241 (5)0.9576 (4)0.2477 (2)0.0476 (7)
O20.7405 (5)0.8747 (4)0.0705 (3)0.0533 (8)
O30.7619 (5)0.5767 (4)0.0397 (2)0.0455 (7)
O40.7181 (5)0.7679 (4)0.3786 (2)0.0483 (7)
N10.5358 (5)0.5725 (4)0.2219 (2)0.0377 (7)
H1A0.53930.54140.15460.045*
C11.2901 (7)0.9966 (5)0.1490 (4)0.0467 (10)
H1B1.44181.04880.12910.056*
H1C1.20461.08080.15760.056*
C21.1548 (7)0.8332 (5)0.0621 (3)0.0379 (9)
H2A1.22910.74310.05840.045*
H2B1.15170.85840.00600.045*
C30.9171 (6)0.7890 (5)0.2294 (3)0.0318 (8)
C41.1355 (7)0.8708 (5)0.2853 (3)0.0386 (9)
C51.2078 (8)0.8729 (7)0.3958 (3)0.0520 (11)
H5A1.37050.87960.40450.078*
H5B1.11340.76770.40950.078*
H5C1.18610.97270.44490.078*
C60.7168 (6)0.7096 (5)0.2834 (3)0.0344 (8)
C70.3405 (7)0.4774 (5)0.2627 (3)0.0339 (8)
C80.3722 (8)0.4250 (6)0.3528 (3)0.0459 (10)
H80.52240.45410.38910.055*
C90.1786 (9)0.3287 (6)0.3887 (4)0.0555 (12)
H90.19900.29530.45020.067*
C100.0441 (9)0.2821 (6)0.3339 (4)0.0574 (12)
H100.17350.21670.35770.069*
C110.0730 (8)0.3329 (6)0.2440 (4)0.0508 (11)
H110.22290.30120.20680.061*
C120.1177 (7)0.4309 (5)0.2077 (3)0.0375 (8)
H120.09600.46520.14670.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (5)0.0390 (5)0.0340 (5)0.0066 (4)0.0065 (4)0.0136 (4)
O10.0300 (14)0.0505 (17)0.0492 (17)0.0020 (12)0.0030 (12)0.0044 (14)
O20.0463 (17)0.071 (2)0.0596 (19)0.0272 (16)0.0125 (14)0.0363 (17)
O30.0411 (15)0.0447 (16)0.0344 (14)0.0056 (12)0.0054 (12)0.0049 (12)
O40.0473 (17)0.0546 (18)0.0334 (15)0.0067 (14)0.0095 (12)0.0059 (13)
N10.0374 (17)0.0426 (18)0.0281 (15)0.0051 (14)0.0082 (13)0.0091 (13)
C10.038 (2)0.036 (2)0.059 (3)0.0018 (17)0.0134 (19)0.0106 (19)
C20.034 (2)0.035 (2)0.043 (2)0.0063 (16)0.0153 (16)0.0115 (16)
C30.0314 (18)0.0325 (18)0.0314 (18)0.0101 (15)0.0059 (15)0.0086 (15)
C40.036 (2)0.036 (2)0.041 (2)0.0123 (16)0.0089 (16)0.0028 (16)
C50.043 (2)0.068 (3)0.038 (2)0.019 (2)0.0017 (18)0.002 (2)
C60.0335 (19)0.0348 (19)0.035 (2)0.0106 (16)0.0060 (15)0.0103 (16)
C70.038 (2)0.0308 (18)0.0303 (18)0.0076 (15)0.0073 (15)0.0068 (15)
C80.045 (2)0.052 (2)0.037 (2)0.0065 (19)0.0042 (18)0.0171 (18)
C90.070 (3)0.052 (3)0.040 (2)0.005 (2)0.016 (2)0.021 (2)
C100.058 (3)0.050 (3)0.057 (3)0.002 (2)0.027 (2)0.017 (2)
C110.039 (2)0.044 (2)0.059 (3)0.0048 (19)0.008 (2)0.007 (2)
C120.040 (2)0.0339 (19)0.0351 (19)0.0086 (16)0.0053 (16)0.0072 (16)
Geometric parameters (Å, º) top
S1—O21.438 (3)C3—C61.501 (5)
S1—O31.445 (3)C4—C51.486 (6)
S1—C31.754 (4)C5—H5A0.9600
S1—C21.761 (4)C5—H5B0.9600
O1—C41.346 (5)C5—H5C0.9600
O1—C11.432 (5)C7—C121.382 (5)
O4—C61.220 (4)C7—C81.383 (5)
N1—C61.359 (5)C8—C91.388 (6)
N1—C71.425 (5)C8—H80.9300
N1—H1A0.8600C9—C101.380 (7)
C1—C21.509 (5)C9—H90.9300
C1—H1B0.9700C10—C111.369 (7)
C1—H1C0.9700C10—H100.9300
C2—H2A0.9700C11—C121.385 (6)
C2—H2B0.9700C11—H110.9300
C3—C41.357 (5)C12—H120.9300
O2—S1—O3116.48 (19)C4—C5—H5A109.5
O2—S1—C3110.85 (18)C4—C5—H5B109.5
O3—S1—C3108.26 (17)H5A—C5—H5B109.5
O2—S1—C2108.98 (18)C4—C5—H5C109.5
O3—S1—C2109.37 (18)H5A—C5—H5C109.5
C3—S1—C2101.89 (18)H5B—C5—H5C109.5
C4—O1—C1118.9 (3)O4—C6—N1122.0 (3)
C6—N1—C7123.8 (3)O4—C6—C3120.6 (3)
C6—N1—H1A118.1N1—C6—C3117.4 (3)
C7—N1—H1A118.1C12—C7—C8120.1 (4)
O1—C1—C2111.0 (3)C12—C7—N1118.7 (3)
O1—C1—H1B109.4C8—C7—N1121.2 (4)
C2—C1—H1B109.4C7—C8—C9119.6 (4)
O1—C1—H1C109.4C7—C8—H8120.2
C2—C1—H1C109.4C9—C8—H8120.2
H1B—C1—H1C108.0C10—C9—C8120.4 (4)
C1—C2—S1107.8 (3)C10—C9—H9119.8
C1—C2—H2A110.2C8—C9—H9119.8
S1—C2—H2A110.2C11—C10—C9119.4 (4)
C1—C2—H2B110.2C11—C10—H10120.3
S1—C2—H2B110.2C9—C10—H10120.3
H2A—C2—H2B108.5C10—C11—C12121.0 (4)
C4—C3—C6120.0 (3)C10—C11—H11119.5
C4—C3—S1121.1 (3)C12—C11—H11119.5
C6—C3—S1118.8 (3)C7—C12—C11119.5 (4)
O1—C4—C3125.3 (4)C7—C12—H12120.3
O1—C4—C5109.0 (3)C11—C12—H12120.3
C3—C4—C5125.7 (4)
C4—O1—C1—C253.6 (5)C7—N1—C6—O44.3 (6)
O1—C1—C2—S167.6 (4)C7—N1—C6—C3176.2 (3)
O2—S1—C2—C174.7 (3)C4—C3—C6—O427.4 (5)
O3—S1—C2—C1157.0 (3)S1—C3—C6—O4156.6 (3)
C3—S1—C2—C142.6 (3)C4—C3—C6—N1153.1 (4)
O2—S1—C3—C4108.1 (3)S1—C3—C6—N122.9 (5)
O3—S1—C3—C4123.0 (3)C6—N1—C7—C12138.0 (4)
C2—S1—C3—C47.8 (4)C6—N1—C7—C844.9 (6)
O2—S1—C3—C676.0 (3)C12—C7—C8—C91.3 (6)
O3—S1—C3—C652.9 (3)N1—C7—C8—C9178.4 (4)
C2—S1—C3—C6168.2 (3)C7—C8—C9—C101.3 (7)
C1—O1—C4—C312.1 (6)C8—C9—C10—C110.6 (7)
C1—O1—C4—C5170.3 (3)C9—C10—C11—C120.3 (7)
C6—C3—C4—O1174.9 (3)C8—C7—C12—C110.5 (6)
S1—C3—C4—O19.2 (5)N1—C7—C12—C11177.6 (4)
C6—C3—C4—C57.9 (6)C10—C11—C12—C70.3 (6)
S1—C3—C4—C5168.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.092.819 (4)142
C2—H2B···O2i0.972.503.274 (5)137
C5—H5A···O4ii0.962.523.422 (6)157
C5—H5B···O40.962.372.786 (6)106
C8—H8···O40.932.582.926 (5)103
C9—H9···O4iii0.932.493.419 (5)175
C1—H1C···Cgiv0.972.823.645144
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H13NO4S
Mr267.29
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.9985 (4), 8.3178 (6), 13.1333 (8)
α, β, γ (°)104.702 (4), 93.180 (5), 106.876 (5)
V3)600.59 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.54 × 0.44 × 0.16
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionIntegration
(XSHELL; Bruker, 1999)
Tmin, Tmax0.888, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
2152, 2152, 1884
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.17
No. of reflections2152
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: XSCANS (Bruker, 1996), XSCANS (Bruker, 1996), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C7—N1—C6—O44.3 (6)C6—N1—C7—C844.9 (6)
S1—C3—C6—N122.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.092.819 (4)142
C2—H2B···O2i0.972.503.274 (5)137
C5—H5A···O4ii0.962.523.422 (6)157
C5—H5B···O40.962.372.786 (6)106
C8—H8···O40.932.582.926 (5)103
C9—H9···O4iii0.932.493.419 (5)175
C1—H1C···Cgiv0.972.823.645144
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant No. DUE-0431664.

References

First citationBaughman, R. G. & Paulos, C. M. (2005). Acta Cryst. E61, o2352–o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, J. T. & Mathre, D. E. (1972). J. Bacteriol. 100, 628–632.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds