metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[hexa­aqua-1κO,2κO,3κ4O-(μ4-3,5-di­carboxylatopyrazol-1-ido-3′:1:2:3κ6O5:N1,O5′:N2,O3:O3′)(μ2-3,5-di­carboxylatopyrazol-1-ido-1:2κ4N2,O3:N1,O5)-1,2-dicopper(II)-3-manganese(II)]

aKey Laboratory for Organic Electronics & Information Displays (KLOEID), and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamxhzhou@njupt.edu.cn

(Received 29 August 2010; accepted 20 September 2010; online 30 September 2010)

In the title compound, [Cu2Mn(C5HN2O4)2(H2O)6]n, the CuII ion is coordinated by two N atoms, two O atoms and one water O atom in a distorted square-pyramidal geometry. The MnII ion is coordinated by two O atoms and four water O atoms in a distorted octa­hedral geometry. Two pyrazolyl-3,5-dicarboxyl­ate anions chelate to two copper ions, forming a dinuclear unit, which further connects the MnII ions into chains extending along [100]. Both independent coordinated water mol­ecules on the MnII ion are disordered in a 50:50 fashion.

Related literature

Pyrazole-3,5-dicarb­oxy­lic acid is a multifunctional ligand which exhibits versatile coordination modes, see: Pan et al. (2001[Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem. 40, 1271-1283.]); Zhou et al. (2009[Zhou, X. H., Peng, Y. H., Du, X. D., Wang, C. F., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des. 9, 1028-1035.]). For related structures, see: King et al. (2004[King, P., Clèrac, R., Anson, C. E. & Powell, A. K. (2004). J. Chem. Soc. Dalton Trans. pp. 852-861.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Mn(C5HN2O4)2(H2O)6]

  • Mr = 596.27

  • Orthorhombic, C m c a

  • a = 21.778 (3) Å

  • b = 13.0387 (19) Å

  • c = 12.3800 (18) Å

  • V = 3515.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 291 K

  • 0.15 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.700

  • 8862 measured reflections

  • 1779 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.126

  • S = 1.26

  • 1779 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazole-3,5-dicarboxylic acid is a multifunctional ligand and exhibits the versatile coordination modes (Pan et al. 2001; Zhou et al. 2009). As a part of our ongoing investigations in this ligand, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Cu atom is coordinated by two carboxylate oxygen atoms and two pyrazolyl nitrogen atoms from two pyrazolyl-3,5-dicarboxylate anions and one water molecule in a distorted square-pyramidal geometry. The Mn atom is coordinated by two O atoms from two pyrazolyl-3,5-dicarboxylate anions and four water molecules in a distorted octahedral geometry (Figure 1). Each two pyrazolyl-3,5-dicarboxylate anoins chelate to two copper ions to form the dinuclear Cu(II) unit with the Cu···Cu distance of 3.883 (1) Å. These dinuclear Cu(II) units connect the manganese atoms by two remaining carboxylate oxygen atoms from a pyrazolyl-3,5-dicarboxylate anion into chains that elongate in the direction of the crystallographic a axis.

Related literature top

Pyrazole-3,5-dicarboxylic acid is a multifunctional ligand which exhibits versatile coordination modes, see: Pan et al. (2001); Zhou et al. (2009). For related structures, see: King et al. (2004).

Experimental top

A mixture of pyrazole-3,5-dicarboxylic acid (0.2 mmol, 34.8 mg), CuI (0.1 mmol, 19 mg), MnCl2.4H2O (0.1 mmol, 19.8 mg), KI (0.1 mmol, 16.6 mg), CH3CN (4 ml) and H2O (2 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 140°C for 3 days. The reaction mixture was slowly cooled to room temperature to obtain the blue block crystals of (I) suitable for X-ray diffraction analysis.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in difference map, their bond lengths were set to 0.85 Å and afterwards they were refined using a riding model with Uiso(H) = 1.5Ueq(O).

The atom O6 is disordered in two positions, with site occupancy factors of 0.50 (3) and 0.50 (3). The atom O7 is disordered in two positions, with site occupancy factors of 0.50 (2) and 0.50 (2). The total occupancy sums of both positions for O6 and O7 are 1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level.
catena-Poly[hexaaqua-1κO,2κO,3κ4O-(µ4- 3,5-dicarboxylatopyrazol-1-ido-3':1:2:3κ6O5:N1, O5':N2,O3:O3')(µ2-3,5- dicarboxylatopyrazol-1-ido-1:2κ4N2,O3:N1, O5)-1,2-dicopper(II)-3-manganese(II)] top
Crystal data top
[Cu2Mn(C5HN2O4)2(H2O)6]F(000) = 2376
Mr = 596.27Dx = 2.253 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 2617 reflections
a = 21.778 (3) Åθ = 2.5–28.3°
b = 13.0387 (19) ŵ = 3.19 mm1
c = 12.3800 (18) ÅT = 291 K
V = 3515.3 (9) Å3Block, blue
Z = 80.15 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1779 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2626
Tmin = 0.646, Tmax = 0.700k = 169
8862 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P]
where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu2Mn(C5HN2O4)2(H2O)6]V = 3515.3 (9) Å3
Mr = 596.27Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 21.778 (3) ŵ = 3.19 mm1
b = 13.0387 (19) ÅT = 291 K
c = 12.3800 (18) Å0.15 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1562 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.700Rint = 0.058
8862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P]
where P = (Fo2 + 2Fc2)/3
1779 reflectionsΔρmax = 0.64 e Å3
164 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.41085 (3)0.14426 (5)1.06815 (5)0.0203 (2)
Mn10.25000.12380 (9)0.75000.0246 (3)
C10.50000.1141 (6)1.3514 (6)0.0224 (16)
H10.50000.10541.42590.027*
C20.4501 (2)0.1221 (4)1.2832 (4)0.0191 (11)
C30.3821 (2)0.1194 (4)1.2885 (4)0.0205 (11)
C40.50000.1212 (5)0.7831 (6)0.0172 (15)
H40.50000.11780.70810.021*
C50.4497 (2)0.1244 (4)0.8532 (4)0.0171 (10)
C60.3809 (2)0.1249 (4)0.8491 (4)0.0183 (10)
N10.47006 (19)0.1342 (3)1.1814 (3)0.0202 (9)
N20.46982 (19)0.1290 (4)0.9544 (3)0.0210 (10)
O10.35447 (17)0.1124 (3)1.3755 (3)0.0298 (10)
O20.35551 (16)0.1236 (3)1.1967 (3)0.0230 (8)
O30.35519 (16)0.1275 (3)0.9417 (3)0.0256 (9)
O40.35220 (16)0.1236 (3)0.7623 (3)0.0229 (8)
O5W0.4030 (2)0.3139 (3)1.0671 (3)0.0364 (10)
H20.38570.33421.12480.055*
H30.38230.33981.01570.055*
O6W0.2501 (4)0.0125 (11)0.6497 (12)0.033 (3)0.50 (3)
H50.26770.06530.67550.049*0.50 (3)
H60.21210.02590.64330.049*0.50 (3)
O6W'0.2644 (7)0.0351 (14)0.6051 (12)0.042 (5)0.50 (3)
H70.24640.05630.54840.063*0.50 (3)
H80.30280.04200.59550.063*0.50 (3)
O7W0.2436 (4)0.2640 (9)0.8425 (12)0.032 (3)0.50 (2)
H90.21150.29760.82580.048*0.50 (2)
H100.27520.30150.85130.048*0.50 (2)
O7W'0.2415 (5)0.2143 (15)0.8986 (13)0.050 (5)0.50 (2)
H110.21520.17550.92870.076*0.50 (2)
H120.27030.19780.94160.076*0.50 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0124 (3)0.0346 (4)0.0139 (3)0.0006 (3)0.0006 (2)0.0007 (3)
Mn10.0162 (5)0.0320 (7)0.0255 (6)0.0000.0000 (5)0.000
C10.024 (4)0.024 (4)0.020 (4)0.0000.0000.004 (3)
C20.019 (2)0.022 (3)0.016 (2)0.000 (2)0.000 (2)0.000 (2)
C30.013 (2)0.026 (3)0.023 (3)0.006 (2)0.006 (2)0.001 (2)
C40.016 (3)0.021 (4)0.015 (3)0.0000.0000.000 (3)
C50.016 (2)0.023 (3)0.013 (2)0.004 (2)0.0023 (19)0.001 (2)
C60.018 (2)0.017 (2)0.020 (3)0.002 (2)0.004 (2)0.002 (2)
N10.015 (2)0.030 (3)0.015 (2)0.0002 (19)0.0011 (16)0.0025 (18)
N20.0120 (19)0.037 (3)0.013 (2)0.0007 (19)0.0019 (16)0.0018 (19)
O10.023 (2)0.046 (3)0.021 (2)0.0112 (17)0.0037 (16)0.0048 (18)
O20.0166 (18)0.037 (2)0.0153 (18)0.0008 (16)0.0004 (15)0.0050 (17)
O30.0148 (17)0.044 (2)0.018 (2)0.0016 (16)0.0015 (14)0.0000 (18)
O40.0193 (17)0.037 (2)0.0120 (18)0.0014 (16)0.0030 (14)0.0009 (16)
O5W0.050 (3)0.040 (2)0.0187 (19)0.015 (2)0.0020 (19)0.0023 (18)
O6W0.021 (4)0.040 (6)0.037 (7)0.001 (4)0.003 (4)0.009 (6)
O6W'0.038 (6)0.058 (10)0.030 (7)0.022 (7)0.016 (5)0.007 (7)
O7W0.018 (4)0.032 (6)0.045 (8)0.004 (4)0.004 (4)0.001 (6)
O7W'0.038 (6)0.072 (11)0.041 (8)0.012 (6)0.011 (5)0.021 (8)
Geometric parameters (Å, º) top
Cu1—N11.910 (4)C3—O21.276 (6)
Cu1—N21.916 (4)C4—C5ii1.398 (6)
Cu1—O31.992 (4)C4—C51.398 (6)
Cu1—O22.014 (4)C4—H40.9300
Cu1—O5W2.219 (4)C5—N21.329 (6)
Mn1—O6W'2.157 (10)C5—C61.500 (7)
Mn1—O6W'i2.157 (10)C6—O41.243 (6)
Mn1—O7W2.162 (9)C6—O31.276 (6)
Mn1—O7Wi2.162 (9)N1—N1ii1.304 (8)
Mn1—O6W2.168 (10)N2—N2ii1.315 (8)
Mn1—O6Wi2.168 (10)O5W—H20.8500
Mn1—O7W'2.193 (10)O5W—H30.8500
Mn1—O7W'i2.193 (10)O6W—H50.8500
Mn1—O42.231 (3)O6W—H60.8500
Mn1—O4i2.231 (3)O6W'—H70.8500
C1—C2ii1.379 (7)O6W'—H80.8499
C1—C21.379 (7)O7W—H90.8500
C1—H10.9300O7W—H100.8500
C2—N11.342 (6)O7W'—H110.8499
C2—C31.484 (7)O7W'—H120.8500
C3—O11.238 (6)
N1—Cu1—N294.59 (18)O7Wi—Mn1—O4i91.7 (2)
N1—Cu1—O3168.67 (18)O6W—Mn1—O4i87.8 (3)
N2—Cu1—O379.57 (16)O6Wi—Mn1—O4i92.1 (3)
N1—Cu1—O279.32 (16)O7W'—Mn1—O4i88.5 (3)
N2—Cu1—O2165.40 (18)O7W'i—Mn1—O4i91.6 (3)
O3—Cu1—O2104.02 (14)O4—Mn1—O4i179.8 (2)
N1—Cu1—O5W97.17 (17)C2ii—C1—C2103.9 (7)
N2—Cu1—O5W98.69 (18)C2ii—C1—H1128.1
O3—Cu1—O5W93.33 (16)C2—C1—H1128.1
O2—Cu1—O5W95.25 (15)N1—C2—C1109.2 (5)
O6W'—Mn1—O6W'i115.2 (12)N1—C2—C3111.5 (4)
O6W'—Mn1—O7W154.6 (8)C1—C2—C3139.3 (5)
O6W'i—Mn1—O7W90.2 (7)O1—C3—O2124.0 (5)
O6W'—Mn1—O7Wi90.2 (7)O1—C3—C2121.7 (5)
O6W'i—Mn1—O7Wi154.6 (8)O2—C3—C2114.4 (4)
O7W—Mn1—O7Wi64.5 (9)C5ii—C4—C5103.2 (6)
O6W'—Mn1—O6W23.7 (3)C5ii—C4—H4128.4
O6W'i—Mn1—O6W92.1 (11)C5—C4—H4128.4
O7W—Mn1—O6W175.4 (5)N2—C5—C4109.2 (4)
O7Wi—Mn1—O6W112.9 (6)N2—C5—C6111.2 (4)
O6W'—Mn1—O6Wi92.1 (11)C4—C5—C6139.6 (5)
O6W'i—Mn1—O6Wi23.7 (3)O4—C6—O3123.8 (5)
O7W—Mn1—O6Wi112.9 (6)O4—C6—C5122.1 (5)
O7Wi—Mn1—O6Wi175.4 (5)O3—C6—C5114.0 (4)
O6W—Mn1—O6Wi69.9 (10)N1ii—N1—C2108.9 (3)
O6W'—Mn1—O7W'176.5 (5)N1ii—N1—Cu1132.47 (12)
O6W'i—Mn1—O7W'65.1 (8)C2—N1—Cu1118.6 (3)
O7W—Mn1—O7W'25.2 (3)N2ii—N2—C5109.3 (3)
O7Wi—Mn1—O7W'89.7 (10)N2ii—N2—Cu1132.09 (12)
O6W—Mn1—O7W'157.2 (8)C5—N2—Cu1118.5 (3)
O6Wi—Mn1—O7W'87.7 (8)C3—O2—Cu1116.0 (3)
O6W'—Mn1—O7W'i65.1 (8)C6—O3—Cu1116.3 (3)
O6W'i—Mn1—O7W'i176.5 (5)C6—O4—Mn1124.1 (3)
O7W—Mn1—O7W'i89.7 (10)Cu1—O5W—H2109.9
O7Wi—Mn1—O7W'i25.2 (3)Cu1—O5W—H3116.2
O6W—Mn1—O7W'i87.7 (8)H2—O5W—H3105.7
O6Wi—Mn1—O7W'i157.2 (8)Mn1—O6W—H5116.8
O7W'—Mn1—O7W'i114.9 (13)Mn1—O6W—H6102.7
O6W'—Mn1—O484.9 (4)H5—O6W—H6107.7
O6W'i—Mn1—O495.0 (4)Mn1—O6W'—H684.8
O7W—Mn1—O491.7 (2)Mn1—O6W'—H7116.4
O7Wi—Mn1—O488.5 (2)H6—O6W'—H794.9
O6W—Mn1—O492.1 (3)Mn1—O7W—H9111.1
O6Wi—Mn1—O487.8 (3)Mn1—O7W—H10120.1
O7W'—Mn1—O491.6 (3)H9—O7W—H10113.6
O7W'i—Mn1—O488.5 (3)Mn1—O7W'—H1196.0
O6W'—Mn1—O4i95.0 (4)Mn1—O7W'—H12109.1
O6W'i—Mn1—O4i84.9 (4)H11—O7W'—H1294.1
O7W—Mn1—O4i88.5 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Mn(C5HN2O4)2(H2O)6]
Mr596.27
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)291
a, b, c (Å)21.778 (3), 13.0387 (19), 12.3800 (18)
V3)3515.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.15 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.646, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
8862, 1779, 1562
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.126, 1.26
No. of reflections1779
No. of parameters164
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.64, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).

References

First citationBruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKing, P., Clèrac, R., Anson, C. E. & Powell, A. K. (2004). J. Chem. Soc. Dalton Trans. pp. 852–861.  CrossRef Google Scholar
First citationPan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem. 40, 1271–1283.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X. H., Peng, Y. H., Du, X. D., Wang, C. F., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des. 9, 1028–1035.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds