metal-organic compounds
catena-Poly[hexaaqua-1κO,2κO,3κ4O-(μ4-3,5-dicarboxylatopyrazol-1-ido-3′:1:2:3κ6O5:N1,O5′:N2,O3:O3′)(μ2-3,5-dicarboxylatopyrazol-1-ido-1:2κ4N2,O3:N1,O5)-1,2-dicopper(II)-3-manganese(II)]
aKey Laboratory for Organic Electronics & Information Displays (KLOEID), and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamxhzhou@njupt.edu.cn
In the title compound, [Cu2Mn(C5HN2O4)2(H2O)6]n, the CuII ion is coordinated by two N atoms, two O atoms and one water O atom in a distorted square-pyramidal geometry. The MnII ion is coordinated by two O atoms and four water O atoms in a distorted octahedral geometry. Two pyrazolyl-3,5-dicarboxylate anions chelate to two copper ions, forming a dinuclear unit, which further connects the MnII ions into chains extending along [100]. Both independent coordinated water molecules on the MnII ion are disordered in a 50:50 fashion.
Related literature
Pyrazole-3,5-dicarboxylic acid is a multifunctional ligand which exhibits versatile coordination modes, see: Pan et al. (2001); Zhou et al. (2009). For related structures, see: King et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810037542/fj2333sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037542/fj2333Isup2.hkl
A mixture of pyrazole-3,5-dicarboxylic acid (0.2 mmol, 34.8 mg), CuI (0.1 mmol, 19 mg), MnCl2.4H2O (0.1 mmol, 19.8 mg), KI (0.1 mmol, 16.6 mg), CH3CN (4 ml) and H2O (2 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 140°C for 3 days. The reaction mixture was slowly cooled to room temperature to obtain the blue block crystals of (I) suitable for X-ray diffraction analysis.
H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in difference map, their bond lengths were set to 0.85 Å and afterwards they were refined using a riding model with Uiso(H) = 1.5Ueq(O).
The atom O6 is disordered in two positions, with site occupancy factors of 0.50 (3) and 0.50 (3). The atom O7 is disordered in two positions, with site occupancy factors of 0.50 (2) and 0.50 (2). The total occupancy sums of both positions for O6 and O7 are 1.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Crystal structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level. |
[Cu2Mn(C5HN2O4)2(H2O)6] | F(000) = 2376 |
Mr = 596.27 | Dx = 2.253 Mg m−3 |
Orthorhombic, Cmca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2bc 2 | Cell parameters from 2617 reflections |
a = 21.778 (3) Å | θ = 2.5–28.3° |
b = 13.0387 (19) Å | µ = 3.19 mm−1 |
c = 12.3800 (18) Å | T = 291 K |
V = 3515.3 (9) Å3 | Block, blue |
Z = 8 | 0.15 × 0.14 × 0.12 mm |
Bruker SMART APEX CCD diffractometer | 1779 independent reflections |
Radiation source: fine-focus sealed tube | 1562 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
phi and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −26→26 |
Tmin = 0.646, Tmax = 0.700 | k = −16→9 |
8862 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P] where P = (Fo2 + 2Fc2)/3 |
1779 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[Cu2Mn(C5HN2O4)2(H2O)6] | V = 3515.3 (9) Å3 |
Mr = 596.27 | Z = 8 |
Orthorhombic, Cmca | Mo Kα radiation |
a = 21.778 (3) Å | µ = 3.19 mm−1 |
b = 13.0387 (19) Å | T = 291 K |
c = 12.3800 (18) Å | 0.15 × 0.14 × 0.12 mm |
Bruker SMART APEX CCD diffractometer | 1779 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1562 reflections with I > 2σ(I) |
Tmin = 0.646, Tmax = 0.700 | Rint = 0.058 |
8862 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P] where P = (Fo2 + 2Fc2)/3 |
1779 reflections | Δρmax = 0.64 e Å−3 |
164 parameters | Δρmin = −0.64 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.41085 (3) | 0.14426 (5) | 1.06815 (5) | 0.0203 (2) | |
Mn1 | 0.2500 | 0.12380 (9) | 0.7500 | 0.0246 (3) | |
C1 | 0.5000 | 0.1141 (6) | 1.3514 (6) | 0.0224 (16) | |
H1 | 0.5000 | 0.1054 | 1.4259 | 0.027* | |
C2 | 0.4501 (2) | 0.1221 (4) | 1.2832 (4) | 0.0191 (11) | |
C3 | 0.3821 (2) | 0.1194 (4) | 1.2885 (4) | 0.0205 (11) | |
C4 | 0.5000 | 0.1212 (5) | 0.7831 (6) | 0.0172 (15) | |
H4 | 0.5000 | 0.1178 | 0.7081 | 0.021* | |
C5 | 0.4497 (2) | 0.1244 (4) | 0.8532 (4) | 0.0171 (10) | |
C6 | 0.3809 (2) | 0.1249 (4) | 0.8491 (4) | 0.0183 (10) | |
N1 | 0.47006 (19) | 0.1342 (3) | 1.1814 (3) | 0.0202 (9) | |
N2 | 0.46982 (19) | 0.1290 (4) | 0.9544 (3) | 0.0210 (10) | |
O1 | 0.35447 (17) | 0.1124 (3) | 1.3755 (3) | 0.0298 (10) | |
O2 | 0.35551 (16) | 0.1236 (3) | 1.1967 (3) | 0.0230 (8) | |
O3 | 0.35519 (16) | 0.1275 (3) | 0.9417 (3) | 0.0256 (9) | |
O4 | 0.35220 (16) | 0.1236 (3) | 0.7623 (3) | 0.0229 (8) | |
O5W | 0.4030 (2) | 0.3139 (3) | 1.0671 (3) | 0.0364 (10) | |
H2 | 0.3857 | 0.3342 | 1.1248 | 0.055* | |
H3 | 0.3823 | 0.3398 | 1.0157 | 0.055* | |
O6W | 0.2501 (4) | −0.0125 (11) | 0.6497 (12) | 0.033 (3) | 0.50 (3) |
H5 | 0.2677 | −0.0653 | 0.6755 | 0.049* | 0.50 (3) |
H6 | 0.2121 | −0.0259 | 0.6433 | 0.049* | 0.50 (3) |
O6W' | 0.2644 (7) | 0.0351 (14) | 0.6051 (12) | 0.042 (5) | 0.50 (3) |
H7 | 0.2464 | 0.0563 | 0.5484 | 0.063* | 0.50 (3) |
H8 | 0.3028 | 0.0420 | 0.5955 | 0.063* | 0.50 (3) |
O7W | 0.2436 (4) | 0.2640 (9) | 0.8425 (12) | 0.032 (3) | 0.50 (2) |
H9 | 0.2115 | 0.2976 | 0.8258 | 0.048* | 0.50 (2) |
H10 | 0.2752 | 0.3015 | 0.8513 | 0.048* | 0.50 (2) |
O7W' | 0.2415 (5) | 0.2143 (15) | 0.8986 (13) | 0.050 (5) | 0.50 (2) |
H11 | 0.2152 | 0.1755 | 0.9287 | 0.076* | 0.50 (2) |
H12 | 0.2703 | 0.1978 | 0.9416 | 0.076* | 0.50 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0124 (3) | 0.0346 (4) | 0.0139 (3) | 0.0006 (3) | 0.0006 (2) | 0.0007 (3) |
Mn1 | 0.0162 (5) | 0.0320 (7) | 0.0255 (6) | 0.000 | 0.0000 (5) | 0.000 |
C1 | 0.024 (4) | 0.024 (4) | 0.020 (4) | 0.000 | 0.000 | 0.004 (3) |
C2 | 0.019 (2) | 0.022 (3) | 0.016 (2) | 0.000 (2) | 0.000 (2) | 0.000 (2) |
C3 | 0.013 (2) | 0.026 (3) | 0.023 (3) | −0.006 (2) | 0.006 (2) | −0.001 (2) |
C4 | 0.016 (3) | 0.021 (4) | 0.015 (3) | 0.000 | 0.000 | 0.000 (3) |
C5 | 0.016 (2) | 0.023 (3) | 0.013 (2) | −0.004 (2) | −0.0023 (19) | −0.001 (2) |
C6 | 0.018 (2) | 0.017 (2) | 0.020 (3) | 0.002 (2) | −0.004 (2) | 0.002 (2) |
N1 | 0.015 (2) | 0.030 (3) | 0.015 (2) | 0.0002 (19) | −0.0011 (16) | 0.0025 (18) |
N2 | 0.0120 (19) | 0.037 (3) | 0.013 (2) | −0.0007 (19) | 0.0019 (16) | −0.0018 (19) |
O1 | 0.023 (2) | 0.046 (3) | 0.021 (2) | −0.0112 (17) | 0.0037 (16) | −0.0048 (18) |
O2 | 0.0166 (18) | 0.037 (2) | 0.0153 (18) | −0.0008 (16) | 0.0004 (15) | 0.0050 (17) |
O3 | 0.0148 (17) | 0.044 (2) | 0.018 (2) | −0.0016 (16) | −0.0015 (14) | 0.0000 (18) |
O4 | 0.0193 (17) | 0.037 (2) | 0.0120 (18) | −0.0014 (16) | −0.0030 (14) | 0.0009 (16) |
O5W | 0.050 (3) | 0.040 (2) | 0.0187 (19) | 0.015 (2) | 0.0020 (19) | 0.0023 (18) |
O6W | 0.021 (4) | 0.040 (6) | 0.037 (7) | 0.001 (4) | 0.003 (4) | 0.009 (6) |
O6W' | 0.038 (6) | 0.058 (10) | 0.030 (7) | 0.022 (7) | −0.016 (5) | −0.007 (7) |
O7W | 0.018 (4) | 0.032 (6) | 0.045 (8) | 0.004 (4) | −0.004 (4) | −0.001 (6) |
O7W' | 0.038 (6) | 0.072 (11) | 0.041 (8) | 0.012 (6) | −0.011 (5) | −0.021 (8) |
Cu1—N1 | 1.910 (4) | C3—O2 | 1.276 (6) |
Cu1—N2 | 1.916 (4) | C4—C5ii | 1.398 (6) |
Cu1—O3 | 1.992 (4) | C4—C5 | 1.398 (6) |
Cu1—O2 | 2.014 (4) | C4—H4 | 0.9300 |
Cu1—O5W | 2.219 (4) | C5—N2 | 1.329 (6) |
Mn1—O6W' | 2.157 (10) | C5—C6 | 1.500 (7) |
Mn1—O6W'i | 2.157 (10) | C6—O4 | 1.243 (6) |
Mn1—O7W | 2.162 (9) | C6—O3 | 1.276 (6) |
Mn1—O7Wi | 2.162 (9) | N1—N1ii | 1.304 (8) |
Mn1—O6W | 2.168 (10) | N2—N2ii | 1.315 (8) |
Mn1—O6Wi | 2.168 (10) | O5W—H2 | 0.8500 |
Mn1—O7W' | 2.193 (10) | O5W—H3 | 0.8500 |
Mn1—O7W'i | 2.193 (10) | O6W—H5 | 0.8500 |
Mn1—O4 | 2.231 (3) | O6W—H6 | 0.8500 |
Mn1—O4i | 2.231 (3) | O6W'—H7 | 0.8500 |
C1—C2ii | 1.379 (7) | O6W'—H8 | 0.8499 |
C1—C2 | 1.379 (7) | O7W—H9 | 0.8500 |
C1—H1 | 0.9300 | O7W—H10 | 0.8500 |
C2—N1 | 1.342 (6) | O7W'—H11 | 0.8499 |
C2—C3 | 1.484 (7) | O7W'—H12 | 0.8500 |
C3—O1 | 1.238 (6) | ||
N1—Cu1—N2 | 94.59 (18) | O7Wi—Mn1—O4i | 91.7 (2) |
N1—Cu1—O3 | 168.67 (18) | O6W—Mn1—O4i | 87.8 (3) |
N2—Cu1—O3 | 79.57 (16) | O6Wi—Mn1—O4i | 92.1 (3) |
N1—Cu1—O2 | 79.32 (16) | O7W'—Mn1—O4i | 88.5 (3) |
N2—Cu1—O2 | 165.40 (18) | O7W'i—Mn1—O4i | 91.6 (3) |
O3—Cu1—O2 | 104.02 (14) | O4—Mn1—O4i | 179.8 (2) |
N1—Cu1—O5W | 97.17 (17) | C2ii—C1—C2 | 103.9 (7) |
N2—Cu1—O5W | 98.69 (18) | C2ii—C1—H1 | 128.1 |
O3—Cu1—O5W | 93.33 (16) | C2—C1—H1 | 128.1 |
O2—Cu1—O5W | 95.25 (15) | N1—C2—C1 | 109.2 (5) |
O6W'—Mn1—O6W'i | 115.2 (12) | N1—C2—C3 | 111.5 (4) |
O6W'—Mn1—O7W | 154.6 (8) | C1—C2—C3 | 139.3 (5) |
O6W'i—Mn1—O7W | 90.2 (7) | O1—C3—O2 | 124.0 (5) |
O6W'—Mn1—O7Wi | 90.2 (7) | O1—C3—C2 | 121.7 (5) |
O6W'i—Mn1—O7Wi | 154.6 (8) | O2—C3—C2 | 114.4 (4) |
O7W—Mn1—O7Wi | 64.5 (9) | C5ii—C4—C5 | 103.2 (6) |
O6W'—Mn1—O6W | 23.7 (3) | C5ii—C4—H4 | 128.4 |
O6W'i—Mn1—O6W | 92.1 (11) | C5—C4—H4 | 128.4 |
O7W—Mn1—O6W | 175.4 (5) | N2—C5—C4 | 109.2 (4) |
O7Wi—Mn1—O6W | 112.9 (6) | N2—C5—C6 | 111.2 (4) |
O6W'—Mn1—O6Wi | 92.1 (11) | C4—C5—C6 | 139.6 (5) |
O6W'i—Mn1—O6Wi | 23.7 (3) | O4—C6—O3 | 123.8 (5) |
O7W—Mn1—O6Wi | 112.9 (6) | O4—C6—C5 | 122.1 (5) |
O7Wi—Mn1—O6Wi | 175.4 (5) | O3—C6—C5 | 114.0 (4) |
O6W—Mn1—O6Wi | 69.9 (10) | N1ii—N1—C2 | 108.9 (3) |
O6W'—Mn1—O7W' | 176.5 (5) | N1ii—N1—Cu1 | 132.47 (12) |
O6W'i—Mn1—O7W' | 65.1 (8) | C2—N1—Cu1 | 118.6 (3) |
O7W—Mn1—O7W' | 25.2 (3) | N2ii—N2—C5 | 109.3 (3) |
O7Wi—Mn1—O7W' | 89.7 (10) | N2ii—N2—Cu1 | 132.09 (12) |
O6W—Mn1—O7W' | 157.2 (8) | C5—N2—Cu1 | 118.5 (3) |
O6Wi—Mn1—O7W' | 87.7 (8) | C3—O2—Cu1 | 116.0 (3) |
O6W'—Mn1—O7W'i | 65.1 (8) | C6—O3—Cu1 | 116.3 (3) |
O6W'i—Mn1—O7W'i | 176.5 (5) | C6—O4—Mn1 | 124.1 (3) |
O7W—Mn1—O7W'i | 89.7 (10) | Cu1—O5W—H2 | 109.9 |
O7Wi—Mn1—O7W'i | 25.2 (3) | Cu1—O5W—H3 | 116.2 |
O6W—Mn1—O7W'i | 87.7 (8) | H2—O5W—H3 | 105.7 |
O6Wi—Mn1—O7W'i | 157.2 (8) | Mn1—O6W—H5 | 116.8 |
O7W'—Mn1—O7W'i | 114.9 (13) | Mn1—O6W—H6 | 102.7 |
O6W'—Mn1—O4 | 84.9 (4) | H5—O6W—H6 | 107.7 |
O6W'i—Mn1—O4 | 95.0 (4) | Mn1—O6W'—H6 | 84.8 |
O7W—Mn1—O4 | 91.7 (2) | Mn1—O6W'—H7 | 116.4 |
O7Wi—Mn1—O4 | 88.5 (2) | H6—O6W'—H7 | 94.9 |
O6W—Mn1—O4 | 92.1 (3) | Mn1—O7W—H9 | 111.1 |
O6Wi—Mn1—O4 | 87.8 (3) | Mn1—O7W—H10 | 120.1 |
O7W'—Mn1—O4 | 91.6 (3) | H9—O7W—H10 | 113.6 |
O7W'i—Mn1—O4 | 88.5 (3) | Mn1—O7W'—H11 | 96.0 |
O6W'—Mn1—O4i | 95.0 (4) | Mn1—O7W'—H12 | 109.1 |
O6W'i—Mn1—O4i | 84.9 (4) | H11—O7W'—H12 | 94.1 |
O7W—Mn1—O4i | 88.5 (2) |
Symmetry codes: (i) −x+1/2, y, −z+3/2; (ii) −x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Mn(C5HN2O4)2(H2O)6] |
Mr | 596.27 |
Crystal system, space group | Orthorhombic, Cmca |
Temperature (K) | 291 |
a, b, c (Å) | 21.778 (3), 13.0387 (19), 12.3800 (18) |
V (Å3) | 3515.3 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.19 |
Crystal size (mm) | 0.15 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.646, 0.700 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8862, 1779, 1562 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.126, 1.26 |
No. of reflections | 1779 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0422P)2 + 21.9067P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.64, −0.64 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
Acknowledgements
This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).
References
Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
King, P., Clèrac, R., Anson, C. E. & Powell, A. K. (2004). J. Chem. Soc. Dalton Trans. pp. 852–861. CrossRef Google Scholar
Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem. 40, 1271–1283. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, X. H., Peng, Y. H., Du, X. D., Wang, C. F., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des. 9, 1028–1035. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole-3,5-dicarboxylic acid is a multifunctional ligand and exhibits the versatile coordination modes (Pan et al. 2001; Zhou et al. 2009). As a part of our ongoing investigations in this ligand, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Cu atom is coordinated by two carboxylate oxygen atoms and two pyrazolyl nitrogen atoms from two pyrazolyl-3,5-dicarboxylate anions and one water molecule in a distorted square-pyramidal geometry. The Mn atom is coordinated by two O atoms from two pyrazolyl-3,5-dicarboxylate anions and four water molecules in a distorted octahedral geometry (Figure 1). Each two pyrazolyl-3,5-dicarboxylate anoins chelate to two copper ions to form the dinuclear Cu(II) unit with the Cu···Cu distance of 3.883 (1) Å. These dinuclear Cu(II) units connect the manganese atoms by two remaining carboxylate oxygen atoms from a pyrazolyl-3,5-dicarboxylate anion into chains that elongate in the direction of the crystallographic a axis.