organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2624-o2625

2-Di­butyl­amino-1-(2,7-di­chloro-9H-fluoren-4-yl)ethanol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka, 575 011, India, and cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 August 2010; accepted 20 September 2010; online 25 September 2010)

In the title compound, C23H29Cl2NO, the fluorene ring is essentially planar, with a maximum deviation from the mean plane of 0.041 (1) Å. The amine group adopts a pyramidal configuration, the sum of the bond angles being 336.2 (3)°. In the crystal, the mol­ecules are linked into dimers by inter­molecular O—H⋯N and C—H⋯O hydrogen bonds. Weak C—H⋯π and ππ [centroid–centroid distance = 3.7544 (7) Å] inter­actions are also observed.

Related literature

For general background and applications of fluorene derivatives, see: Reinhardt et al. (1998[Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L., He, G. S. & Prasad, P. N. (1998). Chem. Mater. 10, 1863-1874.]); Yao & Belfield (2005[Yao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126-5132.]); Werts et al. (2004[Werts, M. H. V., Gmouh, S., Mongin, O., Pons, T. & Blanchard-Desce, M. (2004). J. Am. Chem. Soc. 126, 16294-16295.]); Belfield et al. (2009[Belfield, K. D., Bondar, M. V., Yanez, C. O., Herandez, F. E. & Przhonska, O. V. (2009). J. Mater. Chem. 19, 7498-7502.]); Sun et al. (2009[Sun, M., Ding, Y., Zhao, L. & Ma, F. (2009). Chem. Phys. 359, 166-172.]); Park et al. (2009[Park, K. K., Park, J. W. & Hamilton, A. D. (2009). Org. Biomol. Chem. 7, 4225-4232.]); Kotaka et al. (2010[Kotaka, H., Konishi, G. & Mizuno, K. (2010). Tetrahedron Lett. 51, 181-184.]); Wong et al. (2005[Wong, K., Chen, Y., Lin, Y., Su, H. & Wu, C. (2005). Org. Lett. 7, 5361-5364.]); Beulter et al. (2007[Beulter, U., Fuenfschilling, C. & Steinkemper, A. (2007). Org. Process Res. Dev. 11, 341-345.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H29Cl2NO

  • Mr = 406.37

  • Triclinic, [P \overline 1]

  • a = 10.0009 (4) Å

  • b = 10.8847 (4) Å

  • c = 11.0853 (4) Å

  • α = 68.161 (1)°

  • β = 70.999 (1)°

  • γ = 88.904 (1)°

  • V = 1051.90 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.937

  • 19180 measured reflections

  • 6052 independent reflections

  • 5448 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.135

  • S = 1.15

  • 6052 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C2–C7 and C1/C9–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.89 (2) 1.99 (2) 2.8762 (13) 175 (2)
C14—H14A⋯O1i 0.98 2.57 3.1831 (15) 121
C8—H8ACg2ii 0.97 2.98 3.6293 (13) 126
C22—H22ACg2iii 0.97 2.82 3.6730 (15) 148
C23—H23BCg3i 0.96 2.92 3.7920 (18) 152
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The fluorene ring is a π-conjugated system that enables facile synthetic manipulation. The synthesis and characterization of fluorene derivatives have attracted much attention in recent years because of their interesting properties and potential applications in various fields, such as two-photon absorption dyes, fluorescent probes, and light-emitting materials (Reinhardt et al., 1998; Yao & Belfield, 2005; Werts et al., 2004; Belfield et al., 2009; Sun et al., 2009; Park et al., 2009; Kotaka et al., 2010; Wong et al., 2005). Fluorene derivatives are also possess biological activities like antimalerial property (Beulter et al., 2007). These diverse applications of fluorene derivatives led us to explore the crystal structure of the title compound.

In the title compound (Fig. 1), the fluorene ring is essentially coplanar with maximum deviation of 0.041 (1) Å at atom C5. The amine group adopts a pyramidal configuration. In the crystal structure, the molecules are linked into dimers (Fig. 2) by intermolecular O1—H1O1···N1 and C14—H14A···O1 hydrogen bonds (Table 1). Weak C—H···π and π···π interactions are observed. Cg1···Cg3ii of 3.7544 (7) Å. Cg1 is centroid of benzene ring C1–C2/C7–C9.

Related literature top

For general background and applications of fluorene derivatives, see: Reinhardt et al. (1998); Yao & Belfield (2005); Werts et al. (2004); Belfield et al. (2009); Sun et al. (2009); Park et al. (2009); Kotaka et al. (2010); Wong et al. (2005); Beulter et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was recrystallized from acetone. M.p. 352–354 K. The sample was a gift from SeQuent Scientific Ltd., No: 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka, 575 011, India.

Refinement top

The O-bound hydrogen atom was located from difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model. A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down the a axis showing the molecules link into dimers.
2-Dibutylamino-1-(2,7-dichloro-9H-fluoren-4-yl)ethanol top
Crystal data top
C23H29Cl2NOZ = 2
Mr = 406.37F(000) = 432
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0009 (4) ÅCell parameters from 9903 reflections
b = 10.8847 (4) Åθ = 2.8–35.1°
c = 11.0853 (4) ŵ = 0.32 mm1
α = 68.161 (1)°T = 100 K
β = 70.999 (1)°Block, colourless
γ = 88.904 (1)°0.34 × 0.28 × 0.20 mm
V = 1051.90 (7) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6052 independent reflections
Radiation source: fine-focus sealed tube5448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.900, Tmax = 0.937k = 1315
19180 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.1785P]
where P = (Fo2 + 2Fc2)/3
6052 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C23H29Cl2NOγ = 88.904 (1)°
Mr = 406.37V = 1051.90 (7) Å3
Triclinic, P1Z = 2
a = 10.0009 (4) ÅMo Kα radiation
b = 10.8847 (4) ŵ = 0.32 mm1
c = 11.0853 (4) ÅT = 100 K
α = 68.161 (1)°0.34 × 0.28 × 0.20 mm
β = 70.999 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5448 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.937Rint = 0.025
19180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.65 e Å3
6052 reflectionsΔρmin = 0.39 e Å3
250 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09361 (3)0.21897 (3)0.88976 (3)0.02143 (10)
Cl20.91082 (3)0.72785 (3)0.47680 (3)0.02310 (10)
O10.34512 (9)0.00277 (8)0.98844 (9)0.01700 (17)
N10.61607 (10)0.00676 (9)0.76424 (10)0.01474 (18)
C10.37158 (11)0.35655 (11)0.76122 (11)0.01307 (19)
C20.51590 (11)0.42961 (11)0.70234 (11)0.0137 (2)
C30.64840 (12)0.38878 (11)0.70641 (12)0.0157 (2)
H3A0.65570.30020.75570.019*
C40.76946 (12)0.48193 (12)0.63599 (12)0.0174 (2)
H4A0.85800.45550.63800.021*
C50.75782 (12)0.61409 (12)0.56297 (12)0.0170 (2)
C60.62725 (12)0.65831 (11)0.55809 (11)0.0168 (2)
H6A0.62080.74720.50930.020*
C70.50725 (12)0.56512 (11)0.62855 (11)0.0147 (2)
C80.35494 (12)0.58751 (11)0.64065 (12)0.0166 (2)
H8A0.32110.64720.68790.020*
H8B0.34460.62390.55030.020*
C90.27675 (11)0.44936 (11)0.72460 (11)0.0143 (2)
C100.13297 (12)0.41040 (12)0.76341 (11)0.0161 (2)
H10A0.07090.47190.73900.019*
C110.08464 (11)0.27561 (12)0.84032 (12)0.0160 (2)
C120.17583 (11)0.18198 (11)0.87841 (11)0.0154 (2)
H12A0.13990.09280.93010.019*
C130.32054 (11)0.22131 (11)0.83943 (11)0.01356 (19)
C140.41897 (11)0.11665 (11)0.87700 (11)0.0141 (2)
H14A0.48980.15300.90230.017*
C150.49599 (12)0.08479 (11)0.74948 (12)0.0154 (2)
H15A0.42840.03520.73360.018*
H15B0.53130.16760.66910.018*
C160.74550 (12)0.06358 (12)0.63995 (12)0.0162 (2)
H16A0.82490.01920.66110.019*
H16B0.76520.15690.62180.019*
C170.74054 (12)0.05380 (12)0.50737 (12)0.0188 (2)
H17A0.73010.03930.52090.023*
H17B0.65820.09290.48780.023*
C180.87478 (13)0.12510 (13)0.38423 (12)0.0220 (2)
H18A0.88380.21840.37020.026*
H18B0.95700.08730.40530.026*
C190.87480 (18)0.11485 (18)0.25151 (15)0.0351 (3)
H19A0.96370.15680.17910.053*
H19B0.79820.15850.22590.053*
H19C0.86250.02270.26550.053*
C200.57620 (12)0.13645 (11)0.80309 (12)0.0167 (2)
H20A0.55210.14760.72950.020*
H20B0.49220.16800.88590.020*
C210.69500 (13)0.22106 (12)0.82942 (12)0.0184 (2)
H21A0.76790.20820.74150.022*
H21B0.73810.19120.88200.022*
C220.64153 (15)0.36850 (13)0.90795 (13)0.0229 (2)
H22A0.59820.39820.85540.027*
H22B0.56870.38130.99590.027*
C230.7601 (2)0.45345 (16)0.93422 (16)0.0342 (3)
H23A0.72300.54600.97680.051*
H23B0.79650.43090.99440.051*
H23C0.83530.43690.84800.051*
H1O10.359 (2)0.001 (2)1.062 (2)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01152 (14)0.02463 (17)0.02342 (16)0.00024 (10)0.00496 (11)0.00501 (12)
Cl20.01794 (15)0.02340 (17)0.02422 (16)0.00603 (11)0.00230 (11)0.00900 (12)
O10.0163 (4)0.0142 (4)0.0161 (4)0.0002 (3)0.0040 (3)0.0025 (3)
N10.0124 (4)0.0129 (4)0.0171 (4)0.0023 (3)0.0027 (3)0.0058 (3)
C10.0123 (4)0.0138 (5)0.0132 (4)0.0025 (3)0.0043 (4)0.0055 (4)
C20.0134 (5)0.0145 (5)0.0139 (4)0.0019 (4)0.0047 (4)0.0063 (4)
C30.0145 (5)0.0156 (5)0.0176 (5)0.0020 (4)0.0061 (4)0.0065 (4)
C40.0135 (5)0.0205 (5)0.0195 (5)0.0011 (4)0.0053 (4)0.0095 (4)
C50.0152 (5)0.0194 (5)0.0157 (5)0.0027 (4)0.0029 (4)0.0078 (4)
C60.0184 (5)0.0150 (5)0.0161 (5)0.0000 (4)0.0056 (4)0.0052 (4)
C70.0156 (5)0.0146 (5)0.0141 (5)0.0020 (4)0.0048 (4)0.0060 (4)
C80.0158 (5)0.0141 (5)0.0184 (5)0.0031 (4)0.0061 (4)0.0045 (4)
C90.0139 (5)0.0147 (5)0.0145 (5)0.0034 (4)0.0048 (4)0.0060 (4)
C100.0136 (5)0.0177 (5)0.0167 (5)0.0050 (4)0.0057 (4)0.0061 (4)
C110.0115 (4)0.0183 (5)0.0166 (5)0.0012 (4)0.0036 (4)0.0061 (4)
C120.0126 (5)0.0153 (5)0.0162 (5)0.0016 (4)0.0038 (4)0.0048 (4)
C130.0125 (4)0.0140 (5)0.0135 (4)0.0029 (4)0.0038 (4)0.0053 (4)
C140.0126 (4)0.0118 (5)0.0150 (5)0.0014 (3)0.0033 (4)0.0034 (4)
C150.0138 (5)0.0147 (5)0.0173 (5)0.0033 (4)0.0050 (4)0.0061 (4)
C160.0126 (5)0.0163 (5)0.0174 (5)0.0007 (4)0.0021 (4)0.0066 (4)
C170.0180 (5)0.0181 (5)0.0176 (5)0.0001 (4)0.0025 (4)0.0070 (4)
C180.0179 (5)0.0252 (6)0.0183 (5)0.0014 (4)0.0027 (4)0.0064 (4)
C190.0343 (8)0.0468 (9)0.0195 (6)0.0015 (6)0.0029 (5)0.0130 (6)
C200.0168 (5)0.0130 (5)0.0183 (5)0.0016 (4)0.0042 (4)0.0057 (4)
C210.0204 (5)0.0158 (5)0.0180 (5)0.0054 (4)0.0047 (4)0.0073 (4)
C220.0339 (7)0.0158 (5)0.0187 (5)0.0064 (5)0.0087 (5)0.0069 (4)
C230.0539 (9)0.0255 (7)0.0317 (7)0.0212 (6)0.0222 (7)0.0146 (6)
Geometric parameters (Å, º) top
Cl1—C111.7358 (11)C13—C141.5202 (15)
Cl2—C51.7400 (12)C14—C151.5354 (15)
O1—C141.4175 (13)C14—H14A0.9800
O1—H1O10.89 (2)C15—H15A0.9700
N1—C151.4751 (14)C15—H15B0.9700
N1—C201.4788 (14)C16—C171.5290 (16)
N1—C161.4805 (14)C16—H16A0.9700
C1—C131.4037 (15)C16—H16B0.9700
C1—C91.4119 (14)C17—C181.5252 (16)
C1—C21.4785 (15)C17—H17A0.9700
C2—C31.3989 (15)C17—H17B0.9700
C2—C71.4127 (15)C18—C191.5162 (19)
C3—C41.3950 (16)C18—H18A0.9700
C3—H3A0.9300C18—H18B0.9700
C4—C51.3881 (17)C19—H19A0.9600
C4—H4A0.9300C19—H19B0.9600
C5—C61.3936 (16)C19—H19C0.9600
C6—C71.3878 (15)C20—C211.5261 (16)
C6—H6A0.9300C20—H20A0.9700
C7—C81.5082 (15)C20—H20B0.9700
C8—C91.5062 (16)C21—C221.5197 (17)
C8—H8A0.9700C21—H21A0.9700
C8—H8B0.9700C21—H21B0.9700
C9—C101.3847 (15)C22—C231.5259 (19)
C10—C111.3932 (16)C22—H22A0.9700
C10—H10A0.9300C22—H22B0.9700
C11—C121.3941 (15)C23—H23A0.9600
C12—C131.3940 (15)C23—H23B0.9600
C12—H12A0.9300C23—H23C0.9600
C14—O1—H1O1105.1 (14)N1—C15—H15A109.0
C15—N1—C20111.58 (9)C14—C15—H15A109.0
C15—N1—C16111.49 (9)N1—C15—H15B109.0
C20—N1—C16113.09 (9)C14—C15—H15B109.0
C13—C1—C9119.98 (10)H15A—C15—H15B107.8
C13—C1—C2132.12 (10)N1—C16—C17116.53 (9)
C9—C1—C2107.90 (9)N1—C16—H16A108.2
C3—C2—C7119.17 (10)C17—C16—H16A108.2
C3—C2—C1132.54 (10)N1—C16—H16B108.2
C7—C2—C1108.28 (9)C17—C16—H16B108.2
C4—C3—C2119.50 (11)H16A—C16—H16B107.3
C4—C3—H3A120.2C18—C17—C16111.72 (10)
C2—C3—H3A120.2C18—C17—H17A109.3
C5—C4—C3119.99 (10)C16—C17—H17A109.3
C5—C4—H4A120.0C18—C17—H17B109.3
C3—C4—H4A120.0C16—C17—H17B109.3
C4—C5—C6121.95 (10)H17A—C17—H17B107.9
C4—C5—Cl2118.82 (9)C19—C18—C17113.12 (11)
C6—C5—Cl2119.23 (9)C19—C18—H18A109.0
C7—C6—C5117.74 (10)C17—C18—H18A109.0
C7—C6—H6A121.1C19—C18—H18B109.0
C5—C6—H6A121.1C17—C18—H18B109.0
C6—C7—C2121.64 (10)H18A—C18—H18B107.8
C6—C7—C8128.05 (10)C18—C19—H19A109.5
C2—C7—C8110.31 (10)C18—C19—H19B109.5
C9—C8—C7102.80 (9)H19A—C19—H19B109.5
C9—C8—H8A111.2C18—C19—H19C109.5
C7—C8—H8A111.2H19A—C19—H19C109.5
C9—C8—H8B111.2H19B—C19—H19C109.5
C7—C8—H8B111.2N1—C20—C21112.70 (9)
H8A—C8—H8B109.1N1—C20—H20A109.1
C10—C9—C1121.57 (10)C21—C20—H20A109.1
C10—C9—C8127.77 (10)N1—C20—H20B109.1
C1—C9—C8110.66 (9)C21—C20—H20B109.1
C9—C10—C11117.54 (10)H20A—C20—H20B107.8
C9—C10—H10A121.2C22—C21—C20112.38 (10)
C11—C10—H10A121.2C22—C21—H21A109.1
C10—C11—C12122.07 (10)C20—C21—H21A109.1
C10—C11—Cl1120.11 (9)C22—C21—H21B109.1
C12—C11—Cl1117.81 (9)C20—C21—H21B109.1
C13—C12—C11120.35 (10)H21A—C21—H21B107.9
C13—C12—H12A119.8C21—C22—C23112.52 (12)
C11—C12—H12A119.8C21—C22—H22A109.1
C12—C13—C1118.49 (10)C23—C22—H22A109.1
C12—C13—C14119.41 (10)C21—C22—H22B109.1
C1—C13—C14122.04 (9)C23—C22—H22B109.1
O1—C14—C13112.68 (9)H22A—C22—H22B107.8
O1—C14—C15108.89 (9)C22—C23—H23A109.5
C13—C14—C15108.43 (9)C22—C23—H23B109.5
O1—C14—H14A108.9H23A—C23—H23B109.5
C13—C14—H14A108.9C22—C23—H23C109.5
C15—C14—H14A108.9H23A—C23—H23C109.5
N1—C15—C14112.91 (9)H23B—C23—H23C109.5
C13—C1—C2—C30.9 (2)C9—C10—C11—C120.31 (17)
C9—C1—C2—C3179.75 (11)C9—C10—C11—Cl1178.74 (8)
C13—C1—C2—C7178.18 (11)C10—C11—C12—C130.25 (18)
C9—C1—C2—C71.15 (12)Cl1—C11—C12—C13178.83 (9)
C7—C2—C3—C40.98 (16)C11—C12—C13—C10.12 (17)
C1—C2—C3—C4178.04 (11)C11—C12—C13—C14177.47 (10)
C2—C3—C4—C50.21 (17)C9—C1—C13—C120.40 (16)
C3—C4—C5—C60.51 (17)C2—C1—C13—C12178.86 (11)
C3—C4—C5—Cl2179.76 (9)C9—C1—C13—C14177.68 (10)
C4—C5—C6—C70.40 (17)C2—C1—C13—C141.58 (18)
Cl2—C5—C6—C7179.66 (8)C12—C13—C14—O120.91 (14)
C5—C6—C7—C20.40 (16)C1—C13—C14—O1161.83 (10)
C5—C6—C7—C8179.25 (10)C12—C13—C14—C1599.69 (11)
C3—C2—C7—C61.10 (16)C1—C13—C14—C1577.56 (13)
C1—C2—C7—C6178.14 (10)C20—N1—C15—C1499.92 (11)
C3—C2—C7—C8178.62 (10)C16—N1—C15—C14132.56 (10)
C1—C2—C7—C82.15 (12)O1—C14—C15—N169.47 (11)
C6—C7—C8—C9178.09 (11)C13—C14—C15—N1167.61 (9)
C2—C7—C8—C92.22 (12)C15—N1—C16—C1768.12 (12)
C13—C1—C9—C100.34 (16)C20—N1—C16—C1758.58 (13)
C2—C1—C9—C10179.08 (10)N1—C16—C17—C18175.50 (10)
C13—C1—C9—C8179.72 (10)C16—C17—C18—C19178.77 (12)
C2—C1—C9—C80.29 (12)C15—N1—C20—C21175.79 (9)
C7—C8—C9—C10177.83 (11)C16—N1—C20—C2157.56 (12)
C7—C8—C9—C11.49 (12)N1—C20—C21—C22163.47 (10)
C1—C9—C10—C110.01 (17)C20—C21—C22—C23179.89 (11)
C8—C9—C10—C11179.25 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C1/C9–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.89 (2)1.99 (2)2.8762 (13)175 (2)
C14—H14A···O1i0.982.573.1831 (15)121
C8—H8A···Cg2ii0.972.983.6293 (13)126
C22—H22A···Cg2iii0.972.823.6730 (15)148
C23—H23B···Cg3i0.962.923.7920 (18)152
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H29Cl2NO
Mr406.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0009 (4), 10.8847 (4), 11.0853 (4)
α, β, γ (°)68.161 (1), 70.999 (1), 88.904 (1)
V3)1051.90 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.34 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.900, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
19180, 6052, 5448
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.135, 1.15
No. of reflections6052
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C1/C9–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.89 (2)1.99 (2)2.8762 (13)175 (2)
C14—H14A···O1i0.98002.57003.1831 (15)121.00
C8—H8A···Cg2ii0.97002.98003.6293 (13)126.00
C22—H22A···Cg2iii0.97002.82003.6730 (15)148.00
C23—H23B···Cg3i0.96002.92003.7920 (18)152.00
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. CSY also thanks USM for the award of a USM Fellowship. AMV is thankful to the management of SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work. AMI thankful to the Head of the Department of Chemistry and the Director of the National Institute of Technology-Karnataka, Surathkal, India, for providing research facilities.

References

First citationBelfield, K. D., Bondar, M. V., Yanez, C. O., Herandez, F. E. & Przhonska, O. V. (2009). J. Mater. Chem. 19, 7498–7502.  Web of Science CrossRef CAS Google Scholar
First citationBeulter, U., Fuenfschilling, C. & Steinkemper, A. (2007). Org. Process Res. Dev. 11, 341–345.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKotaka, H., Konishi, G. & Mizuno, K. (2010). Tetrahedron Lett. 51, 181–184.  Web of Science CrossRef CAS Google Scholar
First citationPark, K. K., Park, J. W. & Hamilton, A. D. (2009). Org. Biomol. Chem. 7, 4225–4232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L., He, G. S. & Prasad, P. N. (1998). Chem. Mater. 10, 1863–1874.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, M., Ding, Y., Zhao, L. & Ma, F. (2009). Chem. Phys. 359, 166–172.  Web of Science CrossRef CAS Google Scholar
First citationWerts, M. H. V., Gmouh, S., Mongin, O., Pons, T. & Blanchard-Desce, M. (2004). J. Am. Chem. Soc. 126, 16294–16295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWong, K., Chen, Y., Lin, Y., Su, H. & Wu, C. (2005). Org. Lett. 7, 5361–5364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126–5132.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2624-o2625
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds