organic compounds
Butallylonal 1,4-dioxane hemisolvate
aInstitute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at
The sec-butylpyrimidine-2,4,6-trione 1,4-dioxane hemisolvate], C11H15BrN2O3·0.5C4H8O2, contains one half-molecule of 1,4-dioxane and one molecule of butallylonal, with an almost planar barbiturate ring [largest deviation from the mean plane = 0.049 (5) Å]. The centrosymmetric dioxane molecule adopts a nearly ideal chair conformation. The barbiturate molecules are linked together by an N—H⋯O hydrogen bond, giving a single-stranded chain. Additionally, each dioxane molecule acts as a bridge between two antiparallel strands of hydrogen-bonded barbiturate molecules via two hydrogen bonds, N—H⋯O(dioxane)O⋯H—N. Thus, a ladder structure is obtained, with the connected barbiturate molecules forming the `stiles' and the bridging dioxane molecules the `rungs'.
of the title compound [systematic name: 5-(1-bromoprop-2-en-1-yl)-5-Related literature
For the preparation of butallylonal, see: J. D. Riedel Akt.-Ges. (1924); Boedecker (1929). For related structures, see: Al-Saqqar et al. (2004); Gelbrich et al. (2007, 2010); Craven et al. (1969); Gatehouse & Craven (1971); Lewis et al. (2004); Zencirci et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810038651/fj2340sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810038651/fj2340Isup2.hkl
A solution of butallylonal ("Pernocton"; J. D. Riedel - E. de Haën AG, Berlin) in 1,4-dioxane was filled into an NMR tube and left for evaporation. Colourless crystals of the title compound were obtained after several weeks.
All H atoms were identified in a difference map. H atoms bonded to C atoms were positioned geometrically and refined with Uiso(H) = 1.2 Ueq(C). Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å], and their Uiso parameters were refined freely.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).C11H15BrN2O3·0.5C4H8O2 | F(000) = 712 |
Mr = 347.21 | Dx = 1.497 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 837 reflections |
a = 10.494 (2) Å | θ = 2.5–28.5° |
b = 6.7679 (8) Å | µ = 2.68 mm−1 |
c = 21.864 (3) Å | T = 293 K |
β = 97.294 (15)° | Prism, colourless |
V = 1540.3 (4) Å3 | 0.25 × 0.08 × 0.07 mm |
Z = 4 |
Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 2714 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 1171 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.100 |
Detector resolution: 10.3575 pixels mm-1 | θmax = 25.1°, θmin = 3.2° |
ω scans | h = −10→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −8→8 |
Tmin = 0.990, Tmax = 1.000 | l = −25→26 |
9189 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0409P)2] where P = (Fo2 + 2Fc2)/3 |
2714 reflections | (Δ/σ)max < 0.001 |
189 parameters | Δρmax = 0.56 e Å−3 |
2 restraints | Δρmin = −0.33 e Å−3 |
C11H15BrN2O3·0.5C4H8O2 | V = 1540.3 (4) Å3 |
Mr = 347.21 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.494 (2) Å | µ = 2.68 mm−1 |
b = 6.7679 (8) Å | T = 293 K |
c = 21.864 (3) Å | 0.25 × 0.08 × 0.07 mm |
β = 97.294 (15)° |
Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 2714 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 1171 reflections with I > 2σ(I) |
Tmin = 0.990, Tmax = 1.000 | Rint = 0.100 |
9189 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 2 restraints |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | Δρmax = 0.56 e Å−3 |
2714 reflections | Δρmin = −0.33 e Å−3 |
189 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.64263 (9) | 0.24500 (13) | 0.04609 (4) | 0.0951 (4) | |
N1 | 0.4336 (5) | 0.4954 (6) | 0.1405 (2) | 0.0504 (15) | |
H1 | 0.435 (6) | 0.6246 (17) | 0.138 (2) | 0.061* | |
N3 | 0.3225 (5) | 0.2096 (6) | 0.1096 (2) | 0.0468 (14) | |
H3 | 0.253 (3) | 0.163 (7) | 0.087 (2) | 0.056* | |
O2 | 0.2482 (5) | 0.5076 (6) | 0.0762 (2) | 0.0786 (16) | |
O6 | 0.6264 (5) | 0.4897 (5) | 0.1981 (2) | 0.0752 (16) | |
O4 | 0.3920 (4) | −0.0903 (5) | 0.13692 (18) | 0.0579 (13) | |
C2 | 0.3306 (7) | 0.4133 (8) | 0.1065 (3) | 0.0519 (18) | |
C4 | 0.4088 (6) | 0.0884 (8) | 0.1410 (3) | 0.0450 (16) | |
C5 | 0.5229 (6) | 0.1748 (6) | 0.1812 (3) | 0.0386 (15) | |
C6 | 0.5334 (7) | 0.4010 (8) | 0.1731 (3) | 0.0505 (18) | |
C7 | 0.6478 (6) | 0.0760 (8) | 0.1667 (3) | 0.0501 (17) | |
H7A | 0.7191 | 0.1616 | 0.1817 | 0.060* | |
H7B | 0.6588 | −0.0463 | 0.1899 | 0.060* | |
C8 | 0.6567 (6) | 0.0305 (9) | 0.1013 (3) | 0.0606 (19) | |
C9 | 0.6782 (7) | −0.1521 (11) | 0.0779 (3) | 0.084 (2) | |
H9A | 0.6886 | −0.2609 | 0.1040 | 0.101* | |
H9B | 0.6823 | −0.1675 | 0.0360 | 0.101* | |
C10 | 0.5050 (7) | 0.1407 (8) | 0.2512 (3) | 0.0605 (19) | |
H10 | 0.5815 | 0.1959 | 0.2756 | 0.073* | |
C12 | 0.4966 (9) | −0.0656 (10) | 0.2707 (4) | 0.097 (3) | |
H12A | 0.5544 | −0.1461 | 0.2499 | 0.117* | |
H12B | 0.4099 | −0.1140 | 0.2593 | 0.117* | |
C13 | 0.5331 (10) | −0.0833 (13) | 0.3418 (3) | 0.129 (4) | |
H13D | 0.6067 | −0.0020 | 0.3546 | 0.193* | |
H13E | 0.5530 | −0.2184 | 0.3525 | 0.193* | |
H13F | 0.4622 | −0.0404 | 0.3622 | 0.193* | |
C14 | 0.3888 (8) | 0.2595 (10) | 0.2694 (3) | 0.103 (3) | |
H14A | 0.4032 | 0.3982 | 0.2640 | 0.154* | |
H14B | 0.3793 | 0.2338 | 0.3117 | 0.154* | |
H14C | 0.3120 | 0.2201 | 0.2436 | 0.154* | |
O1S | 0.1014 (4) | 0.0764 (5) | 0.04030 (19) | 0.0650 (14) | |
C1S | 0.0085 (7) | 0.2010 (7) | 0.0056 (3) | 0.072 (2) | |
H1S1 | 0.0491 | 0.3243 | −0.0036 | 0.086* | |
H1S2 | −0.0595 | 0.2313 | 0.0303 | 0.086* | |
C2S | 0.0465 (7) | −0.1081 (8) | 0.0515 (3) | 0.066 (2) | |
H2S1 | −0.0200 | −0.0899 | 0.0781 | 0.080* | |
H2S2 | 0.1119 | −0.1938 | 0.0727 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.1010 (8) | 0.1162 (6) | 0.0699 (6) | 0.0078 (6) | 0.0173 (5) | 0.0284 (5) |
N1 | 0.050 (4) | 0.025 (2) | 0.070 (3) | −0.006 (3) | −0.019 (3) | 0.003 (3) |
N3 | 0.048 (4) | 0.025 (2) | 0.062 (3) | −0.006 (2) | −0.014 (3) | 0.002 (2) |
O2 | 0.068 (4) | 0.046 (2) | 0.112 (4) | 0.003 (2) | −0.028 (3) | 0.021 (2) |
O6 | 0.072 (4) | 0.051 (2) | 0.092 (4) | −0.017 (2) | −0.032 (3) | −0.008 (2) |
O4 | 0.063 (3) | 0.027 (2) | 0.078 (3) | −0.0022 (19) | −0.011 (2) | 0.0016 (19) |
C2 | 0.056 (5) | 0.037 (3) | 0.061 (4) | 0.004 (3) | 0.000 (4) | 0.009 (3) |
C4 | 0.057 (5) | 0.036 (3) | 0.042 (4) | −0.002 (3) | 0.006 (3) | 0.006 (3) |
C5 | 0.043 (4) | 0.027 (3) | 0.044 (4) | 0.001 (3) | −0.003 (3) | 0.005 (2) |
C6 | 0.059 (5) | 0.042 (3) | 0.046 (4) | 0.009 (4) | −0.011 (4) | 0.002 (3) |
C7 | 0.044 (5) | 0.047 (3) | 0.059 (4) | 0.000 (3) | 0.003 (3) | −0.001 (3) |
C8 | 0.049 (5) | 0.066 (4) | 0.068 (5) | −0.003 (4) | 0.009 (4) | −0.002 (4) |
C9 | 0.091 (7) | 0.098 (5) | 0.068 (5) | 0.003 (5) | 0.031 (5) | 0.005 (4) |
C10 | 0.082 (6) | 0.050 (3) | 0.052 (4) | 0.020 (4) | 0.017 (4) | 0.006 (3) |
C12 | 0.107 (8) | 0.084 (5) | 0.103 (7) | −0.001 (5) | 0.023 (6) | 0.008 (5) |
C13 | 0.144 (9) | 0.186 (8) | 0.060 (6) | 0.060 (8) | 0.029 (6) | 0.072 (6) |
C14 | 0.132 (8) | 0.114 (6) | 0.067 (5) | 0.072 (6) | 0.032 (5) | 0.019 (5) |
O1S | 0.058 (3) | 0.046 (2) | 0.080 (3) | −0.003 (2) | −0.031 (3) | 0.001 (2) |
C1S | 0.071 (5) | 0.041 (3) | 0.097 (6) | 0.006 (3) | −0.016 (4) | −0.002 (4) |
C2S | 0.073 (6) | 0.056 (4) | 0.063 (5) | 0.004 (4) | −0.014 (4) | 0.012 (3) |
Br1—C8 | 1.881 (6) | C10—C12 | 1.466 (8) |
N1—C6 | 1.351 (7) | C10—C14 | 1.553 (9) |
N1—C2 | 1.351 (7) | C10—H10 | 0.9800 |
N1—H1 | 0.876 (10) | C12—C13 | 1.558 (9) |
N3—C4 | 1.344 (6) | C12—H12A | 0.9700 |
N3—C2 | 1.384 (7) | C12—H12B | 0.9700 |
N3—H3 | 0.89 (4) | C13—H13D | 0.9600 |
O2—C2 | 1.203 (6) | C13—H13E | 0.9600 |
O6—C6 | 1.215 (6) | C13—H13F | 0.9600 |
O4—C4 | 1.224 (5) | C14—H14A | 0.9600 |
C4—C5 | 1.510 (7) | C14—H14B | 0.9600 |
C5—C7 | 1.540 (8) | C14—H14C | 0.9600 |
C5—C6 | 1.547 (7) | O1S—C2S | 1.410 (7) |
C5—C10 | 1.583 (8) | O1S—C1S | 1.431 (7) |
C7—C8 | 1.479 (8) | C1S—C2Si | 1.452 (8) |
C7—H7A | 0.9700 | C1S—H1S1 | 0.9700 |
C7—H7B | 0.9700 | C1S—H1S2 | 0.9700 |
C8—C9 | 1.366 (8) | C2S—C1Si | 1.452 (8) |
C9—H9A | 0.9300 | C2S—H2S1 | 0.9700 |
C9—H9B | 0.9300 | C2S—H2S2 | 0.9700 |
C6—N1—C2 | 127.5 (5) | C14—C10—C5 | 111.4 (5) |
C6—N1—H1 | 119 (4) | C12—C10—H10 | 106.3 |
C2—N1—H1 | 113 (4) | C14—C10—H10 | 106.3 |
C4—N3—C2 | 126.3 (5) | C5—C10—H10 | 106.3 |
C4—N3—H3 | 121 (3) | C10—C12—C13 | 110.3 (6) |
C2—N3—H3 | 112 (3) | C10—C12—H12A | 109.6 |
O2—C2—N1 | 123.6 (5) | C13—C12—H12A | 109.6 |
O2—C2—N3 | 120.8 (6) | C10—C12—H12B | 109.6 |
N1—C2—N3 | 115.6 (5) | C13—C12—H12B | 109.6 |
O4—C4—N3 | 118.9 (5) | H12A—C12—H12B | 108.1 |
O4—C4—C5 | 121.4 (5) | C12—C13—H13D | 109.5 |
N3—C4—C5 | 119.6 (4) | C12—C13—H13E | 109.5 |
C4—C5—C7 | 110.2 (4) | H13D—C13—H13E | 109.5 |
C4—C5—C6 | 112.3 (5) | C12—C13—H13F | 109.5 |
C7—C5—C6 | 109.4 (5) | H13D—C13—H13F | 109.5 |
C4—C5—C10 | 108.8 (5) | H13E—C13—H13F | 109.5 |
C7—C5—C10 | 110.2 (5) | C10—C14—H14A | 109.5 |
C6—C5—C10 | 105.9 (4) | C10—C14—H14B | 109.5 |
O6—C6—N1 | 121.9 (5) | H14A—C14—H14B | 109.5 |
O6—C6—C5 | 120.2 (5) | C10—C14—H14C | 109.5 |
N1—C6—C5 | 117.8 (5) | H14A—C14—H14C | 109.5 |
C8—C7—C5 | 116.7 (5) | H14B—C14—H14C | 109.5 |
C8—C7—H7A | 108.1 | C2S—O1S—C1S | 110.4 (4) |
C5—C7—H7A | 108.1 | O1S—C1S—C2Si | 111.7 (5) |
C8—C7—H7B | 108.1 | O1S—C1S—H1S1 | 109.3 |
C5—C7—H7B | 108.1 | C2Si—C1S—H1S1 | 109.3 |
H7A—C7—H7B | 107.3 | O1S—C1S—H1S2 | 109.3 |
C9—C8—C7 | 125.7 (6) | C2Si—C1S—H1S2 | 109.3 |
C9—C8—Br1 | 117.5 (6) | H1S1—C1S—H1S2 | 107.9 |
C7—C8—Br1 | 116.8 (4) | O1S—C2S—C1Si | 111.1 (5) |
C8—C9—H9A | 120.0 | O1S—C2S—H2S1 | 109.4 |
C8—C9—H9B | 120.0 | C1Si—C2S—H2S1 | 109.4 |
H9A—C9—H9B | 120.0 | O1S—C2S—H2S2 | 109.4 |
C12—C10—C14 | 110.0 (7) | C1Si—C2S—H2S2 | 109.4 |
C12—C10—C5 | 116.0 (5) | H2S1—C2S—H2S2 | 108.0 |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4ii | 0.88 (1) | 1.98 (2) | 2.837 (5) | 166 (6) |
N3—H3···O1S | 0.89 (4) | 1.87 (4) | 2.757 (6) | 177 (5) |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C11H15BrN2O3·0.5C4H8O2 |
Mr | 347.21 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.494 (2), 6.7679 (8), 21.864 (3) |
β (°) | 97.294 (15) |
V (Å3) | 1540.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.68 |
Crystal size (mm) | 0.25 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.990, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9189, 2714, 1171 |
Rint | 0.100 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.145, 0.95 |
No. of reflections | 2714 |
No. of parameters | 189 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.33 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.876 (10) | 1.980 (18) | 2.837 (5) | 166 (6) |
N3—H3···O1S | 0.89 (4) | 1.87 (4) | 2.757 (6) | 177 (5) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
TG acknowledges financial support from the Lise Meitner Program of the Austrian Science Fund (FWF, project LM 1135-N17).
References
Al-Saqqar, S., Falvello, L. R. & Soler, T. (2004). J. Chem. Crystallogr. 34, 61–65. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boedecker, F. (1929). US Patent 1739662 Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Craven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978–1993. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Gatehouse, B. M. & Craven, B. M. (1971). Acta Cryst. B27, 1337–1344. CSD CrossRef IUCr Journals Web of Science Google Scholar
Gelbrich, T., Rossi, D. & Griesser, U. J. (2010). Acta Cryst. E66, o1219. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gelbrich, T., Zencirci, N. & Griesser, U. J. (2007). Acta Cryst. C63, o751–o753. Web of Science CSD CrossRef IUCr Journals Google Scholar
J. D. Riedel Akt.-Ges. (1924). GB Patent 244122. Google Scholar
Lewis, T. C., Tocher, D. A. & Price, S. L. (2004). Cryst. Growth Des. 4, 979–987. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zencirci, N., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2009). Cryst. Growth Des. 9, 3444–3456. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
5,5-Dihydroxybarbituric acid (alternative names: butallylonal, butylalylonal, pernocton, pernoston, sonbutal; CAS number 1142–70-7) has been used as a sedative drug since the 1920s, mainly as an anaesthetic in veterinary medicine. The asymmetric unit of the title compound contains one butallylonal molecule exhibiting an almost planar barbiturate ring [where atom C6 shows the largest deviation from the mean plane, 0.049 (5) Å] and half a molecule of 1,4-dioxane. The two torsion angles of the C8—C7—C5—C10—C14 chain are trans, C7—C5—C10—C12 is gauche and C5—C10—C14 trans (see Fig. 1). The centrosymmetric dioxane molecule adopts a near-to-ideal chair conformation.
The barbiturate molecules are linked together by one N—H···O bond to give a single-stranded chain. Additionally, each dioxane molecule acts as a bridge between two antiparallel strands of H-bonded barbiturate molecules. This interaction involves two hydrogen bonds, N—H···O(dioxane)O···H—N. Overall, a ladder structure is generated, which propagates parallel to the b axis (see Fig. 2). The stiles of the ladder are formed by the connected barbiturate molecules and its rungs by the bridging dioxane molecules. This H-bonded structure is reminiscent of the ladder motif observed in single component structures of several barbiturates, see Craven et al. (1969); Gatehouse & Craven (1971); Lewis et al. (2004); Gelbrich et al. (2007); Zencirci et al. (2009). The main difference to the title structure is that in these cases, a second C=O group participates in hydrogen bonding so that two antiparallel strands of H-bonded barbiturate molecules are linked together directly via centrosymmetric R22(8) rings (Bernstein et al., 1995).