organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5,5,6,8,8-Hexa­methyl-5,6,7,8-tetra­hydro-2-naphthoic acid (AHTN–COOH)

aBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany, and bHumboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
*Correspondence e-mail: paul.kuhlich@bam.de

(Received 23 August 2010; accepted 27 September 2010; online 30 September 2010)

The title compound, C17H24O2, is the product of a haloform reaction of 6-acetyl-1,1,2,4,4,7-hexa­methyl­tetra­line (AHTN). The compound is a racemic mixture with a disorder in its aliphatic ring [occupany ratio 0.683 (4):0.317 (4)] due to two possible half-chair forms. The carb­oxy­lic acid unit is slightly twisted out of coplanarity with the aromatic system [dihedral angle = 29.26 (6)°]. In the crystal, pairs of short classical inter­molecular O—H⋯O hydrogen bonds link pairs of mol­ecules around a center of symmetry.

Related literature

For a similar synthesis of AHTN-COOH and the mechanism of the haloform reaction, see: Valdersnes et al. (2006[Valdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461-471.]); Fuson & Bull (1934[Fuson, R. C. & Bull, B. A. (1934). Chem. Rev. 15, 275-309.]). For the crystal structure of AHTN, see: De Ridder et al. (1990[De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200-2202.]). For environmental occurrence and estrogenic activity of AHTN, see: Heberer (2003[Heberer, T. (2003). Acta Hydrochim. Hydrob. 30, 227-243.]); Bitsch et al. (2002[Bitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G. & Brunn, H. (2002). Arch. Environ. Contam. Toxicol. 43, 257-264.]). For industrial synthesis of AHTN and annual production amounts, see: Sell (2006[Sell, C. (2006). The Chemistry of Fragrances, p. 100. London: Royal Society of Chemistry.]); Kupper et al. (2004[Kupper, T., Berset, J. D., Etter-Holzer, R., Furrer, R. & Tarradellas, J. (2004). Chemosphere, 54, 1111-1120.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24O2

  • Mr = 260.36

  • Monoclinic, P 21 /c

  • a = 8.9718 (2) Å

  • b = 10.1447 (3) Å

  • c = 17.7058 (5) Å

  • β = 112.3100 (19)°

  • V = 1490.88 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.44 × 0.44 × 0.28 mm

Data collection
  • Stoe IPDS-2t diffractometer

  • 5695 measured reflections

  • 2933 independent reflections

  • 2525 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.04

  • 2933 reflections

  • 206 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.91 1.72 2.6305 (16) 178
Symmetry code: (i) -x-1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound is the carboxylic acid AHTN-COOH 2 of 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) obtained by a Haloform reaction (Fuson & Bull, 1934) of AHTN 1 with sodium hypochlorite solution (NaOCl). The reaction mechanism is shown in Figure 1. A similar synthesis was given by Valdersnes et al. (2006). AHTN-COOH 2 might be a disinfection by-product of AHTN 1.

AHTN itself is a widely used fragrance in cosmetics and cleaning products. Its commonest trade name is Tonalide. The crystal structure of AHTN was shown by De Ridder (De Ridder et al., 1990). AHTN is produced in the ton-scale, in 2000, approx. 343,000 kg (Kupper et al., 2004) and introduced into the environment mainly by sewage treatment plants supplied by municipal wastewater. It can be found in surface water at low µg/L concentration (Heberer, 2003). Due to the low estrogenic potential of AHTN (Bitsch et al., 2002) this might induce a health concern.

The industrial synthesis of AHTN 1 is shown in Figure 2. Both starting chemicals are inexpensive and readily available: para-cymene and neo-hexene, the later results from an olefin metathesis of di-iso-butylene with ethylene (Sell, 2006). AHTN 1 is obtained as racemic mixture in industrial-scale. Hence, the title compound AHTN-COOH 2 is obtained as racemic mixture, too.

The compound (Fig. 3) is crystallizing in the monoclinic space group P21/c. It shows disorder (68:32) within the cyclohexane moiety: the two possible half-chair forms are present.

The compound exhibits a short classical intermolecular H bond which links the molecules into pairs around a center of symmetry (Fig. 4). A summary of these interactions is compiled in Table 1.

Related literature top

For a similar synthesis of AHTN-COOH and the mechanism of the haloform reaction, see: Valdersnes et al. (2006); Fuson & Bull (1934). For the crystal structure of AHTN, see: De Ridder et al. (1990). For environmental occurrence and estrogenic activity of AHTN, see: Heberer (2003); Bitsch et al. (2002). For industrial synthesis of AHTN and annual production amounts, see: Sell (2006); Kupper et al. (2004).

Experimental top

NaOCl was added to a solution of racemic AHTN in acetonitrile. The mixture was stirred for 72 h at room temperature. Afterwards water was added to dissolve precipitated salt, sodium sulfite to quench free chlorine and 6 M hydrochloric acid to adjust the pH to one. The organic layer was extracted with diethyl ether. The extracts were combined, dried over anhydrous sodium sulfate and filtered. Evaporation of the solvent in vacuo gave a white crystalline residue that was washed with cyclohexane. Recrystallization from diethyl ether resulted in colorless crystals [m.p. 497 K]. IR (ν, cm-1): 1675(s), 1609(s), 1550(s), 1498(s), 1364(s), 1305(s), 1262(s), 1247(s), 1111(s), 912(s), 885(s), 850(s); 1H-NMR (500 MHz; CD3OD; TMS): δ [ppm] = 7.88 (1H, s), 7.24 (1H, s), 2.52 (3H, s), 1.89 (1H, m), 1.64 (1H, dd, 2J=13.3Hz, 3J=13.3Hz), 1.41 (1H, dd, 2J=13.5Hz, 3J=2.6Hz), 1.33 (3H, s), 1.30 (3H, s), 1.25 (3H, s), 1.07 (3H, s), 1.01 (3H, d, J=6.9Hz); 13C-NMR (125 MHz, CD3OD, TMS): δ [ppm] = 171.5, 151.6, 143.4, 137.8, 131.3, 130.5, 128.5, 44.7, 38.9, 35.8, 35.0, 32.8, 32.4, 28.9, 25.1, 21.9, 17.3; (+)-ESI/MS: 261.5 (40) [M+H+], 283.5 (100) [M+Na+].

Refinement top

Non-H atoms were refined anisotropically and all H atoms were placed in calculated positions and refined using a riding model with C—H distances of 0.93 Å for the CH groups, 0.97 Å for the CH2 groups and 0.96 Å for the CH3 groups, Uiso(H) = 1.5Ueq(non-H), except for the H2 atom which was found in the electron density map and fixed in its position. Methyl groups were allowed to rotate as rigid groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Haloform reaction of AHTN 1 to result in AHTN-COOH 2.
[Figure 2] Fig. 2. Industrial production of AHTN 1.
[Figure 3] Fig. 3. Displacement parameter plots of the two half-chair conformations in the crystal structure. Displacement ellipsoids are set to 30% probability, H atoms were excluded for clarity.
[Figure 4] Fig. 4. Packing diagram of the unit-cell content, view direction [0 1 0]. All H atoms are excluded except for the one involved in H bond formation. Only one conformer is shown.
3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydro-2-naphthoic acid top
Crystal data top
C17H24O2F(000) = 568
Mr = 260.36Dx = 1.160 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 30064 reflections
a = 8.9718 (2) Åθ = 2.3–30.9°
b = 10.1447 (3) ŵ = 0.07 mm1
c = 17.7058 (5) ÅT = 100 K
β = 112.3100 (19)°Fragment, colourless
V = 1490.88 (7) Å30.44 × 0.44 × 0.28 mm
Z = 4
Data collection top
Stoe IPDS-2t
diffractometer
2525 reflections with I > 2σ(I)
Radiation source: long fine focus sealed X-ray tubeRint = 0.016
Planar graphite monochromatorθmax = 26.0°, θmin = 2.8°
Detector resolution: 6.67 pixels mm-1h = 1110
ω–rotation,ω–incr.=1°,319 exposures scansk = 1212
5695 measured reflectionsl = 2110
2933 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.4377P]
where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.29 e Å3
30 restraintsΔρmin = 0.34 e Å3
Crystal data top
C17H24O2V = 1490.88 (7) Å3
Mr = 260.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9718 (2) ŵ = 0.07 mm1
b = 10.1447 (3) ÅT = 100 K
c = 17.7058 (5) Å0.44 × 0.44 × 0.28 mm
β = 112.3100 (19)°
Data collection top
Stoe IPDS-2t
diffractometer
2525 reflections with I > 2σ(I)
5695 measured reflectionsRint = 0.016
2933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04730 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2933 reflectionsΔρmin = 0.34 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.40903 (12)0.07719 (11)0.05516 (6)0.0301 (3)
O20.31528 (12)0.04014 (11)0.07904 (6)0.0274 (3)
H20.40960.00080.07230.099 (10)*
C10.30126 (16)0.08804 (13)0.01415 (8)0.0198 (3)
C20.14885 (15)0.15904 (13)0.02749 (8)0.0191 (3)
C30.07123 (16)0.22058 (13)0.10232 (8)0.0192 (3)
H30.11540.21270.14190.029*
C40.06989 (16)0.29353 (13)0.12086 (8)0.0192 (3)
C50.13789 (16)0.30168 (13)0.06178 (8)0.0196 (3)
C60.05971 (16)0.23646 (14)0.01268 (8)0.0230 (3)
H60.10690.24000.05120.034*
C70.08302 (16)0.16713 (14)0.03275 (8)0.0219 (3)
C80.15681 (19)0.10224 (17)0.11538 (9)0.0316 (4)
H8A0.25210.14940.14830.047*
H8B0.18460.01280.10880.047*
H8C0.08070.10320.14160.047*
C90.29440 (16)0.37676 (14)0.07460 (8)0.0231 (3)
C10A0.3364 (4)0.4704 (4)0.1476 (2)0.0292 (7)0.683 (4)
H10A0.25820.54280.13210.044*0.683 (4)
C11A0.3210 (3)0.3998 (3)0.21971 (13)0.0272 (7)0.683 (4)
H11A0.36270.45600.26750.041*0.683 (4)
H11B0.38580.32020.23100.041*0.683 (4)
C15A0.5059 (12)0.5308 (12)0.1732 (6)0.0497 (14)0.683 (4)
H15A0.52650.58660.21980.075*0.683 (4)
H15B0.51230.58190.12880.075*0.683 (4)
H15C0.58470.46150.18670.075*0.683 (4)
C10B0.3736 (8)0.4188 (8)0.1699 (4)0.0292 (15)0.317 (4)
H10B0.42040.34040.20260.044*0.317 (4)
C11B0.2488 (7)0.4758 (5)0.1983 (3)0.0297 (14)0.317 (4)
H11C0.18510.54170.16000.045*0.317 (4)
H11D0.30050.51710.25130.045*0.317 (4)
C15B0.507 (3)0.524 (3)0.1870 (15)0.0497 (14)0.317 (4)
H15D0.45780.60930.17060.075*0.317 (4)
H15E0.57250.50380.15680.075*0.317 (4)
H15F0.57200.52560.24430.075*0.317 (4)
C14A0.0479 (4)0.4785 (3)0.20837 (16)0.0297 (6)0.683 (4)
H14A0.06110.45260.19780.045*0.683 (4)
H14B0.04880.54220.16840.045*0.683 (4)
H14C0.09470.51660.26190.045*0.683 (4)
C14B0.0085 (8)0.4464 (7)0.2128 (4)0.0297 (6)0.317 (4)
H14D0.02980.49370.26350.045*0.317 (4)
H14E0.09220.38650.21180.045*0.317 (4)
H14F0.05040.50750.16830.045*0.317 (4)
C120.14176 (18)0.36242 (15)0.20370 (8)0.0261 (3)
C130.1649 (2)0.26665 (17)0.27301 (9)0.0393 (4)
H13A0.22610.30840.32410.059*
H13B0.22170.19020.26630.059*
H13C0.06170.24070.27250.059*
C160.42374 (19)0.27774 (17)0.07668 (13)0.0408 (4)
H16A0.52190.32370.08430.061*
H16B0.38870.23000.02610.061*
H16C0.44200.21720.12100.061*
C170.2657 (2)0.4705 (2)0.00255 (13)0.0492 (5)
H17A0.18000.53040.00160.074*
H17B0.23670.42040.04700.074*
H17C0.36230.51950.01110.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (5)0.0408 (6)0.0227 (5)0.0104 (4)0.0028 (4)0.0008 (4)
O20.0213 (5)0.0348 (6)0.0255 (5)0.0064 (4)0.0081 (4)0.0061 (4)
C10.0183 (6)0.0202 (6)0.0202 (6)0.0005 (5)0.0066 (5)0.0002 (5)
C20.0172 (6)0.0191 (7)0.0203 (6)0.0001 (5)0.0063 (5)0.0007 (5)
C30.0206 (6)0.0198 (7)0.0187 (6)0.0008 (5)0.0092 (5)0.0012 (5)
C40.0200 (6)0.0170 (6)0.0185 (6)0.0001 (5)0.0050 (5)0.0002 (5)
C50.0177 (6)0.0175 (6)0.0227 (6)0.0001 (5)0.0067 (5)0.0012 (5)
C60.0238 (7)0.0266 (7)0.0223 (7)0.0025 (5)0.0130 (6)0.0021 (5)
C70.0228 (7)0.0233 (7)0.0197 (6)0.0024 (5)0.0081 (5)0.0024 (5)
C80.0328 (8)0.0414 (9)0.0230 (7)0.0119 (7)0.0135 (6)0.0100 (6)
C90.0188 (7)0.0235 (7)0.0271 (7)0.0041 (5)0.0088 (5)0.0006 (6)
C10A0.0318 (16)0.0283 (16)0.0270 (15)0.0133 (12)0.0106 (12)0.0039 (12)
C11A0.0238 (12)0.0336 (15)0.0201 (10)0.0111 (11)0.0038 (9)0.0039 (10)
C15A0.0487 (12)0.068 (2)0.036 (4)0.0383 (13)0.019 (2)0.016 (2)
C10B0.026 (3)0.026 (3)0.028 (3)0.006 (2)0.001 (2)0.004 (2)
C11B0.038 (3)0.023 (3)0.024 (2)0.006 (2)0.006 (2)0.000 (2)
C15B0.0487 (12)0.068 (2)0.036 (4)0.0383 (13)0.019 (2)0.016 (2)
C14A0.0400 (18)0.0209 (14)0.0221 (9)0.0016 (11)0.0048 (11)0.0056 (9)
C14B0.0400 (18)0.0209 (14)0.0221 (9)0.0016 (11)0.0048 (11)0.0056 (9)
C120.0300 (7)0.0291 (8)0.0189 (6)0.0107 (6)0.0087 (5)0.0050 (6)
C130.0526 (10)0.0349 (9)0.0199 (7)0.0117 (8)0.0020 (7)0.0004 (6)
C160.0247 (8)0.0343 (9)0.0677 (12)0.0011 (7)0.0224 (8)0.0013 (8)
C170.0290 (9)0.0488 (11)0.0625 (12)0.0103 (8)0.0092 (8)0.0271 (9)
Geometric parameters (Å, º) top
O1—C11.2458 (17)C15A—H15B0.9600
O2—C11.2969 (16)C15A—H15C0.9600
O2—H20.9088C10B—C11B1.505 (9)
C1—C21.4830 (18)C10B—C15B1.546 (12)
C2—C31.3892 (18)C10B—H10B0.9800
C2—C71.4040 (18)C11B—C121.524 (5)
C3—C41.3939 (19)C11B—H11C0.9700
C3—H30.9300C11B—H11D0.9700
C4—C51.3992 (19)C15B—H15D0.9600
C4—C121.5289 (18)C15B—H15E0.9600
C5—C61.4020 (19)C15B—H15F0.9600
C5—C91.5366 (18)C14A—C121.468 (3)
C6—C71.3839 (19)C14A—H14A0.9600
C6—H60.9300C14A—H14B0.9600
C7—C81.5089 (18)C14A—H14C0.9600
C8—H8A0.9600C14B—C121.653 (7)
C8—H8B0.9600C14B—H14D0.9600
C8—H8C0.9600C14B—H14E0.9600
C9—C161.525 (2)C14B—H14F0.9600
C9—C10A1.532 (3)C12—C131.516 (2)
C9—C171.533 (2)C13—H13A0.9600
C9—C10B1.620 (6)C13—H13B0.9600
C10A—C11A1.515 (4)C13—H13C0.9600
C10A—C15A1.540 (7)C16—H16A0.9600
C10A—H10A0.9800C16—H16B0.9600
C11A—C121.570 (3)C16—H16C0.9600
C11A—H11A0.9700C17—H17A0.9600
C11A—H11B0.9700C17—H17B0.9600
C15A—H15A0.9600C17—H17C0.9600
C1—O2—H2117.0C15B—C10B—C9112.8 (11)
O1—C1—O2122.65 (12)C11B—C10B—H10B108.7
O1—C1—C2121.59 (12)C15B—C10B—H10B108.7
O2—C1—C2115.76 (11)C9—C10B—H10B108.7
C3—C2—C7119.68 (12)C10B—C11B—C12107.3 (4)
C3—C2—C1117.92 (11)C10B—C11B—H11C110.3
C7—C2—C1122.39 (12)C12—C11B—H11C110.3
C2—C3—C4123.01 (12)C10B—C11B—H11D110.3
C2—C3—H3118.5C12—C11B—H11D110.3
C4—C3—H3118.5H11C—C11B—H11D108.5
C3—C4—C5118.05 (12)C10B—C15B—H15D109.5
C3—C4—C12118.89 (12)C10B—C15B—H15E109.5
C5—C4—C12123.05 (12)H15D—C15B—H15E109.5
C4—C5—C6118.07 (12)C10B—C15B—H15F109.5
C4—C5—C9123.51 (12)H15D—C15B—H15F109.5
C6—C5—C9118.41 (11)H15E—C15B—H15F109.5
C7—C6—C5124.41 (12)C12—C14A—H14A109.5
C7—C6—H6117.8C12—C14A—H14B109.5
C5—C6—H6117.8C12—C14A—H14C109.5
C6—C7—C2116.73 (12)C12—C14B—H14D109.5
C6—C7—C8119.56 (12)C12—C14B—H14E109.5
C2—C7—C8123.70 (12)C12—C14B—H14F109.5
C7—C8—H8A109.5C14A—C12—C13111.94 (16)
C7—C8—H8B109.5C13—C12—C11B129.6 (2)
H8A—C8—H8B109.5C14A—C12—C4112.25 (15)
C7—C8—H8C109.5C13—C12—C4111.21 (12)
H8A—C8—H8C109.5C11B—C12—C4109.3 (2)
H8B—C8—H8C109.5C14A—C12—C11A111.49 (18)
C16—C9—C10A116.56 (19)C13—C12—C11A101.08 (15)
C16—C9—C17108.36 (14)C4—C12—C11A108.28 (12)
C10A—C9—C17103.15 (19)C13—C12—C14B96.8 (3)
C16—C9—C5108.75 (12)C11B—C12—C14B100.0 (3)
C10A—C9—C5110.50 (14)C4—C12—C14B105.4 (2)
C17—C9—C5109.21 (12)C12—C13—H13A109.5
C16—C9—C10B96.9 (3)C12—C13—H13B109.5
C17—C9—C10B124.9 (3)H13A—C13—H13B109.5
C5—C9—C10B107.4 (2)C12—C13—H13C109.5
C11A—C10A—C9110.2 (2)H13A—C13—H13C109.5
C11A—C10A—C15A109.7 (4)H13B—C13—H13C109.5
C9—C10A—C15A113.2 (5)C9—C16—H16A109.5
C11A—C10A—H10A107.9C9—C16—H16B109.5
C9—C10A—H10A107.9H16A—C16—H16B109.5
C15A—C10A—H10A107.9C9—C16—H16C109.5
C10A—C11A—C12112.1 (2)H16A—C16—H16C109.5
C10A—C11A—H11A109.2H16B—C16—H16C109.5
C12—C11A—H11A109.2C9—C17—H17A109.5
C10A—C11A—H11B109.2C9—C17—H17B109.5
C12—C11A—H11B109.2H17A—C17—H17B109.5
H11A—C11A—H11B107.9C9—C17—H17C109.5
C11B—C10B—C15B106.6 (14)H17A—C17—H17C109.5
C11B—C10B—C9111.2 (5)H17B—C17—H17C109.5
O1—C1—C2—C3150.42 (13)C5—C9—C10A—C15A170.1 (5)
O2—C1—C2—C328.69 (18)C10B—C9—C10A—C15A83.1 (9)
O1—C1—C2—C728.8 (2)C9—C10A—C11A—C1267.0 (3)
O2—C1—C2—C7152.14 (13)C15A—C10A—C11A—C12167.7 (6)
C7—C2—C3—C41.2 (2)C16—C9—C10B—C11B157.8 (5)
C1—C2—C3—C4177.96 (12)C10A—C9—C10B—C11B55.8 (7)
C2—C3—C4—C51.7 (2)C17—C9—C10B—C11B84.1 (5)
C2—C3—C4—C12177.34 (12)C5—C9—C10B—C11B45.6 (6)
C3—C4—C5—C60.27 (19)C16—C9—C10B—C15B82.6 (15)
C12—C4—C5—C6178.78 (13)C10A—C9—C10B—C15B63.9 (16)
C3—C4—C5—C9178.97 (12)C17—C9—C10B—C15B35.5 (15)
C12—C4—C5—C92.0 (2)C5—C9—C10B—C15B165.3 (14)
C4—C5—C6—C71.8 (2)C15B—C10B—C11B—C12164.9 (11)
C9—C5—C6—C7178.93 (13)C9—C10B—C11B—C1271.8 (6)
C5—C6—C7—C22.3 (2)C10B—C11B—C12—C14A166.0 (4)
C5—C6—C7—C8179.27 (14)C10B—C11B—C12—C1385.6 (4)
C3—C2—C7—C60.74 (19)C10B—C11B—C12—C456.4 (5)
C1—C2—C7—C6179.90 (12)C10B—C11B—C12—C11A38.6 (4)
C3—C2—C7—C8179.11 (13)C10B—C11B—C12—C14B166.8 (5)
C1—C2—C7—C81.7 (2)C3—C4—C12—C14A73.3 (2)
C4—C5—C9—C16113.07 (15)C5—C4—C12—C14A105.7 (2)
C6—C5—C9—C1666.16 (17)C3—C4—C12—C1352.99 (17)
C4—C5—C9—C10A16.1 (2)C5—C4—C12—C13127.97 (15)
C6—C5—C9—C10A164.7 (2)C3—C4—C12—C11B157.5 (3)
C4—C5—C9—C17128.86 (16)C5—C4—C12—C11B21.5 (3)
C6—C5—C9—C1751.91 (18)C3—C4—C12—C11A163.19 (15)
C4—C5—C9—C10B9.2 (3)C5—C4—C12—C11A17.8 (2)
C6—C5—C9—C10B170.0 (3)C3—C4—C12—C14B50.8 (3)
C16—C9—C10A—C11A78.0 (3)C5—C4—C12—C14B128.2 (3)
C17—C9—C10A—C11A163.4 (2)C10A—C11A—C12—C14A74.4 (3)
C5—C9—C10A—C11A46.8 (3)C10A—C11A—C12—C13166.5 (2)
C10B—C9—C10A—C11A40.1 (6)C10A—C11A—C12—C11B48.5 (3)
C16—C9—C10A—C15A45.3 (6)C10A—C11A—C12—C449.6 (3)
C17—C9—C10A—C15A73.3 (6)C10A—C11A—C12—C14B83.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.911.722.6305 (16)178
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H24O2
Mr260.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9718 (2), 10.1447 (3), 17.7058 (5)
β (°) 112.3100 (19)
V3)1490.88 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.44 × 0.44 × 0.28
Data collection
DiffractometerStoe IPDS2t
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5695, 2933, 2525
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.04
No. of reflections2933
No. of parameters206
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.911.722.6305 (16)178
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors wish to thank Dr Beatrice Braun (Humboldt University, Berlin, Institute of Chemistry) for providing diffractometer time and helping with the interpretation of the data.

References

First citationBitsch, N., Dudas, C., Korner, W., Failing, K., Biselli, S., Rimkus, G. & Brunn, H. (2002). Arch. Environ. Contam. Toxicol. 43, 257–264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200–2202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuson, R. C. & Bull, B. A. (1934). Chem. Rev. 15, 275–309.  CrossRef CAS Google Scholar
First citationHeberer, T. (2003). Acta Hydrochim. Hydrob. 30, 227–243.  CrossRef CAS Google Scholar
First citationKupper, T., Berset, J. D., Etter-Holzer, R., Furrer, R. & Tarradellas, J. (2004). Chemosphere, 54, 1111–1120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSell, C. (2006). The Chemistry of Fragrances, p. 100. London: Royal Society of Chemistry.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationValdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461–471.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds