organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-benzamido-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carboxyl­ate

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 19 September 2010; accepted 21 September 2010; online 30 September 2010)

The mol­ecule of the title compound, C18H19NO3S, adopts an approximately planar conformation: the thio­phene and phenyl rings form a dihedral angle of 8.13 (11)° while the ethyl ester group (r.m.s. deviation = 0.0217 Å) is inclined at 1.25 (14) and 8.61 (13)°, respectively, to the thio­phene and phenyl rings. An intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif occurs as well as an intra­molecular S⋯O hypervalent inter­action [S⋯O = 2.7369 (18) Å]. The cyclo­hexene ring adopts a half-chair conformation and is disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6). In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(10) loops.

Related literature

For background on thio­phene derivatives, see: Dupin et al. (2002[Dupin, J. P., Gryglewski, R. J., Gravier, D., Hou, G., Casadebaig, F., Swies, J. & Chlopicki, S. (2002). J. Physiol. Pharmacol. 53, 625-634.]); Khan & Rolim (1983[Khan, M. A. & Rolim, A. C. (1983). J. Heterocycl. Chem. 20, 475-476.]); Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]). For related structures, see: Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732-o3734.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2949.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO3S

  • Mr = 329.40

  • Monoclinic, P 21 /c

  • a = 8.1061 (2) Å

  • b = 10.6593 (3) Å

  • c = 19.0554 (5) Å

  • β = 92.500 (1)°

  • V = 1644.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.958

  • 12204 measured reflections

  • 2964 independent reflections

  • 2052 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.01

  • 2964 reflections

  • 210 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.02 2.664 (2) 131
C6—H6⋯O1i 0.93 2.44 3.242 (3) 145
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Thiophenes and their condensed derivatives have been described in the literature (Khan & Rolim, 1983). Tetrahydro-1-benzothiophenes are intermediates for many useful products such as dyes and pharmaceuticals (Sabnis et al., 1999) and compounds containing thrombolytic activity (Dupin et al., 2002). The title compound (Fig. 1) has been prepared for the derivatization of other compounds.

The crystal structures of ethyl 2-acetylamino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Harrison et al., 2006) and i.e. ethyl 2-(propionylamino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Yathirajan et al., 2007) have been published which are related to the title compound.

In the title compound, the heterocyclic ring A (S1/C8/C9/C10/C15) and the phenyl ring B (C1—C6) are planar. The dihedral angle between A/B is 8.13 (11)°. The ethyl ester group C (O2/C16/O3/C17/C18) is planar with r. m. s. deviation of 0.0217 Å and is inclined at 1.25 (14) and 8.61 (13)° with the rings A and B, respectively. In the title compound an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). Two methylene groups of the cyclohexene ring in half-chair conformation are disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6).

Related literature top

For background on thiophene derivatives, see: Dupin et al. (2002); Khan & Rolim (1983); Sabnis et al. (1999). For related structures, see: Harrison et al. (2006); Yathirajan et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (0.3 g, 1.0 mmol) was dissolved in 10 ml of chloroform. To this solution 0.15 ml of benzoyl chloride was added and heated under reflux for 9 h. The solvent was removed and the residue was recrystallized from ethanol to affoard the colorless prism.

Refinement top

In the cyclohexene ring two methylene groups are disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6). The disordered C atoms were refined anisotropically with equal displacement parameters (EADP instruction of SHELXL97).

The H atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The dotted line shows intramolecular hydrogen bonding.
Ethyl 2-benzamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate top
Crystal data top
C18H19NO3SF(000) = 696
Mr = 329.40Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2052 reflections
a = 8.1061 (2) Åθ = 2.5–25.3°
b = 10.6593 (3) ŵ = 0.21 mm1
c = 19.0554 (5) ÅT = 296 K
β = 92.500 (1)°Prism, colorless
V = 1644.92 (8) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2964 independent reflections
Radiation source: fine-focus sealed tube2052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.953, Tmax = 0.958l = 2222
12204 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4332P]
where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.16 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H19NO3SV = 1644.92 (8) Å3
Mr = 329.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1061 (2) ŵ = 0.21 mm1
b = 10.6593 (3) ÅT = 296 K
c = 19.0554 (5) Å0.25 × 0.20 × 0.20 mm
β = 92.500 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2964 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2052 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.037
12204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2964 reflectionsΔρmin = 0.20 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.75739 (8)0.64947 (6)0.09851 (3)0.0685 (2)
O10.9000 (2)0.82309 (16)0.01442 (9)0.0875 (7)
O20.8026 (2)0.41537 (14)0.09850 (7)0.0658 (6)
O30.6816 (2)0.26412 (14)0.03830 (7)0.0666 (6)
N10.8625 (2)0.63457 (16)0.03524 (8)0.0527 (6)
C10.9770 (3)0.8019 (2)0.10411 (11)0.0545 (7)
C20.9702 (3)0.7346 (2)0.16629 (12)0.0679 (9)
C31.0262 (3)0.7864 (3)0.22706 (13)0.0781 (10)
C41.0909 (3)0.9047 (3)0.22675 (14)0.0804 (11)
C51.1013 (3)0.9711 (3)0.16569 (16)0.0830 (11)
C61.0438 (3)0.9216 (2)0.10479 (13)0.0697 (9)
C70.9121 (3)0.7563 (2)0.03689 (12)0.0582 (8)
C80.7865 (2)0.5770 (2)0.01970 (10)0.0484 (7)
C90.7256 (2)0.45660 (19)0.01795 (10)0.0464 (7)
C100.6520 (2)0.4227 (2)0.08292 (10)0.0505 (7)
C110.5695 (3)0.2999 (2)0.09967 (11)0.0615 (8)
C12A0.5302 (8)0.2864 (5)0.1768 (3)0.0771 (13)0.641 (6)
C13A0.4684 (7)0.4071 (4)0.2069 (3)0.0771 (13)0.641 (6)
C140.5952 (3)0.5146 (3)0.20270 (12)0.0820 (10)
C150.6620 (3)0.5167 (2)0.12986 (11)0.0601 (8)
C160.7408 (3)0.3798 (2)0.04470 (11)0.0518 (7)
C170.6953 (4)0.1819 (2)0.09806 (13)0.0804 (10)
C180.6130 (4)0.0615 (3)0.08052 (16)0.1017 (13)
C12B0.4639 (11)0.3191 (11)0.1642 (4)0.0771 (13)0.359 (6)
C13B0.5564 (13)0.3883 (8)0.2231 (4)0.0771 (13)0.359 (6)
H10.880060.589430.071570.0632*
H41.127710.939630.267970.0964*
H20.927510.653620.167050.0815*
H31.019810.740510.268600.0936*
H11A0.641110.231420.086920.0738*
H11B0.467740.292690.071200.0738*
H12A0.447090.221780.181360.0926*0.641 (6)
H12B0.628870.260100.203380.0926*0.641 (6)
H13A0.443020.393690.255570.0926*0.641 (6)
H13B0.367030.431380.181470.0926*0.641 (6)
H14A0.542760.594090.212470.0985*
H14B0.684760.501680.237380.0985*
H17A0.810520.167360.107240.0962*
H17B0.641830.219150.139550.0962*
H18A0.665590.026420.038880.1525*
H18B0.621800.003660.118810.1525*
H18C0.498610.076820.072590.1525*
H51.147761.050840.165170.0996*
H61.049690.968800.063710.0837*
H12C0.365490.366160.150210.0926*0.359 (6)
H12D0.429290.237980.181300.0926*0.359 (6)
H13C0.489490.390360.264020.0926*0.359 (6)
H13D0.657700.343710.235640.0926*0.359 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0836 (4)0.0704 (4)0.0522 (3)0.0085 (3)0.0127 (3)0.0147 (3)
O10.1332 (16)0.0676 (12)0.0634 (10)0.0298 (11)0.0243 (10)0.0167 (9)
O20.0950 (11)0.0567 (10)0.0472 (9)0.0046 (8)0.0196 (8)0.0014 (7)
O30.0983 (12)0.0495 (9)0.0532 (9)0.0073 (8)0.0168 (8)0.0036 (7)
N10.0610 (11)0.0512 (11)0.0463 (10)0.0008 (8)0.0086 (8)0.0027 (8)
C10.0553 (12)0.0529 (13)0.0555 (13)0.0032 (10)0.0045 (10)0.0017 (11)
C20.0746 (15)0.0689 (16)0.0609 (14)0.0185 (12)0.0098 (12)0.0028 (13)
C30.0868 (18)0.089 (2)0.0591 (15)0.0080 (15)0.0115 (13)0.0011 (14)
C40.0936 (19)0.0776 (19)0.0714 (17)0.0040 (15)0.0196 (14)0.0237 (16)
C50.101 (2)0.0565 (16)0.093 (2)0.0055 (14)0.0221 (16)0.0151 (15)
C60.0878 (17)0.0550 (15)0.0670 (15)0.0053 (12)0.0108 (13)0.0003 (12)
C70.0642 (14)0.0529 (14)0.0576 (13)0.0069 (11)0.0053 (10)0.0027 (12)
C80.0476 (11)0.0559 (13)0.0418 (11)0.0043 (10)0.0031 (9)0.0007 (9)
C90.0489 (11)0.0482 (12)0.0420 (11)0.0049 (9)0.0025 (9)0.0029 (9)
C100.0485 (12)0.0593 (14)0.0439 (11)0.0080 (10)0.0039 (9)0.0047 (10)
C110.0621 (13)0.0656 (15)0.0576 (13)0.0034 (11)0.0117 (10)0.0105 (11)
C12A0.076 (3)0.098 (2)0.0587 (18)0.004 (2)0.0198 (18)0.0171 (15)
C13A0.076 (3)0.098 (2)0.0587 (18)0.004 (2)0.0198 (18)0.0171 (15)
C140.0943 (18)0.105 (2)0.0479 (13)0.0045 (16)0.0172 (12)0.0045 (14)
C150.0626 (14)0.0730 (16)0.0452 (12)0.0009 (11)0.0096 (10)0.0011 (11)
C160.0594 (13)0.0505 (13)0.0456 (12)0.0025 (10)0.0044 (10)0.0043 (10)
C170.127 (2)0.0565 (15)0.0587 (15)0.0111 (15)0.0169 (14)0.0116 (12)
C180.154 (3)0.0614 (18)0.090 (2)0.0203 (18)0.0097 (19)0.0084 (16)
C12B0.076 (3)0.098 (2)0.0587 (18)0.004 (2)0.0198 (18)0.0171 (15)
C13B0.076 (3)0.098 (2)0.0587 (18)0.004 (2)0.0198 (18)0.0171 (15)
Geometric parameters (Å, º) top
S1—C81.714 (2)C13B—C141.440 (9)
S1—C151.732 (2)C14—C151.512 (3)
O1—C71.217 (3)C17—C181.491 (4)
O2—C161.221 (3)C2—H20.9300
O3—C161.331 (3)C3—H30.9300
O3—C171.445 (3)C4—H40.9300
N1—C71.359 (3)C5—H50.9300
N1—C81.381 (2)C6—H60.9300
N1—H10.8600C11—H11A0.9700
C1—C21.384 (3)C11—H11B0.9700
C1—C61.386 (3)C12A—H12A0.9700
C1—C71.488 (3)C12A—H12B0.9700
C2—C31.378 (3)C12B—H12D0.9700
C3—C41.366 (4)C12B—H12C0.9700
C4—C51.361 (4)C13A—H13B0.9700
C5—C61.375 (4)C13A—H13A0.9700
C8—C91.375 (3)C13B—H13C0.9700
C9—C101.444 (3)C13B—H13D0.9700
C9—C161.457 (3)C14—H14A0.9700
C10—C151.343 (3)C14—H14B0.9700
C10—C111.510 (3)C17—H17A0.9700
C11—C12A1.524 (6)C17—H17B0.9700
C11—C12B1.542 (8)C18—H18B0.9600
C12A—C13A1.503 (7)C18—H18C0.9600
C12B—C13B1.514 (12)C18—H18A0.9600
C13A—C141.544 (6)
C8—S1—C1590.83 (10)C1—C6—H6120.00
C16—O3—C17116.70 (17)C5—C6—H6120.00
C7—N1—C8125.72 (18)C10—C11—H11A109.00
C7—N1—H1117.00C10—C11—H11B109.00
C8—N1—H1117.00C12A—C11—H11A109.00
C2—C1—C6118.0 (2)C12A—C11—H11B109.00
C2—C1—C7124.4 (2)H11A—C11—H11B108.00
C6—C1—C7117.5 (2)C12B—C11—H11A131.00
C1—C2—C3120.6 (2)C12B—C11—H11B88.00
C2—C3—C4120.5 (2)C11—C12A—H12A109.00
C3—C4—C5119.6 (3)C11—C12A—H12B109.00
C4—C5—C6120.8 (3)C13A—C12A—H12A109.00
C1—C6—C5120.5 (2)C13A—C12A—H12B109.00
O1—C7—C1123.0 (2)H12A—C12A—H12B108.00
O1—C7—N1120.4 (2)C13B—C12B—H12C109.00
N1—C7—C1116.61 (19)C11—C12B—H12C109.00
S1—C8—C9112.26 (14)C11—C12B—H12D109.00
S1—C8—N1123.14 (16)C13B—C12B—H12D109.00
N1—C8—C9124.60 (18)H12C—C12B—H12D108.00
C8—C9—C16120.08 (17)C12A—C13A—H13A109.00
C10—C9—C16127.95 (18)C14—C13A—H13A109.00
C8—C9—C10111.98 (17)C14—C13A—H13B109.00
C11—C10—C15121.34 (18)C12A—C13A—H13B109.00
C9—C10—C11126.98 (18)H13A—C13A—H13B108.00
C9—C10—C15111.67 (19)C14—C13B—H13C109.00
C10—C11—C12B108.7 (5)C14—C13B—H13D109.00
C10—C11—C12A113.5 (3)C12B—C13B—H13C109.00
C11—C12A—C13A112.0 (4)C12B—C13B—H13D109.00
C11—C12B—C13B112.4 (7)H13C—C13B—H13D108.00
C12A—C13A—C14112.4 (4)C13A—C14—H14A110.00
C12B—C13B—C14111.2 (7)C13A—C14—H14B110.00
C13A—C14—C15108.9 (3)C15—C14—H14A110.00
C13B—C14—C15110.7 (4)C13B—C14—H14A131.00
S1—C15—C10113.26 (16)C13B—C14—H14B81.00
S1—C15—C14120.80 (18)C15—C14—H14B110.00
C10—C15—C14125.9 (2)H14A—C14—H14B108.00
O2—C16—C9124.47 (19)C18—C17—H17A110.00
O3—C16—C9113.69 (18)O3—C17—H17A110.00
O2—C16—O3121.84 (19)O3—C17—H17B110.00
O3—C17—C18107.2 (2)H17A—C17—H17B109.00
C1—C2—H2120.00C18—C17—H17B110.00
C3—C2—H2120.00C17—C18—H18C109.00
C2—C3—H3120.00C17—C18—H18B109.00
C4—C3—H3120.00H18B—C18—H18C109.00
C3—C4—H4120.00H18A—C18—H18B109.00
C5—C4—H4120.00H18A—C18—H18C109.00
C4—C5—H5120.00C17—C18—H18A109.00
C6—C5—H5120.00
C15—S1—C8—N1179.88 (17)S1—C8—C9—C100.33 (19)
C15—S1—C8—C90.02 (15)S1—C8—C9—C16179.36 (15)
C8—S1—C15—C100.32 (18)N1—C8—C9—C10179.57 (16)
C8—S1—C15—C14178.7 (2)N1—C8—C9—C160.8 (3)
C17—O3—C16—O20.5 (3)C8—C9—C10—C11178.53 (18)
C17—O3—C16—C9178.9 (2)C8—C9—C10—C150.6 (2)
C16—O3—C17—C18176.8 (2)C16—C9—C10—C111.8 (3)
C8—N1—C7—O14.4 (3)C16—C9—C10—C15179.1 (2)
C8—N1—C7—C1174.38 (19)C8—C9—C16—O21.6 (3)
C7—N1—C8—S15.3 (3)C8—C9—C16—O3177.88 (18)
C7—N1—C8—C9174.55 (19)C10—C9—C16—O2178.8 (2)
C6—C1—C2—C30.9 (4)C10—C9—C16—O31.8 (3)
C7—C1—C2—C3176.9 (2)C9—C10—C11—C12A170.4 (3)
C2—C1—C6—C50.0 (4)C15—C10—C11—C12A10.6 (4)
C7—C1—C6—C5178.0 (2)C9—C10—C15—S10.6 (2)
C2—C1—C7—O1170.1 (2)C9—C10—C15—C14178.9 (2)
C2—C1—C7—N18.6 (3)C11—C10—C15—S1178.60 (16)
C6—C1—C7—O17.7 (4)C11—C10—C15—C140.3 (3)
C6—C1—C7—N1173.6 (2)C10—C11—C12A—C13A39.9 (5)
C1—C2—C3—C40.7 (4)C11—C12A—C13A—C1459.8 (6)
C2—C3—C4—C50.6 (4)C12A—C13A—C14—C1546.7 (5)
C3—C4—C5—C61.6 (4)C13A—C14—C15—S1160.7 (3)
C4—C5—C6—C11.3 (4)C13A—C14—C15—C1017.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.022.664 (2)131
C6—H6···O1i0.932.443.242 (3)145
C11—H11A···O30.972.452.845 (3)104
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H19NO3S
Mr329.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1061 (2), 10.6593 (3), 19.0554 (5)
β (°) 92.500 (1)
V3)1644.92 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12204, 2964, 2052
Rint0.037
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.01
No. of reflections2964
No. of parameters210
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.022.664 (2)131
C6—H6···O1i0.932.443.242 (3)145
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupin, J. P., Gryglewski, R. J., Gravier, D., Hou, G., Casadebaig, F., Swies, J. & Chlopicki, S. (2002). J. Physiol. Pharmacol. 53, 625–634.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. A. & Rolim, A. C. (1983). J. Heterocycl. Chem. 20, 475–476.  CrossRef CAS Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2949.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds