organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2537-o2538

N,N′-[(8-endo,11-endo-Dihy­dr­oxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-8,11-di­yl)bis­­(methyl­enecarbon­yl)]di-L-phenyl­alanine

aSchool of Chemistry, University of KwaZulu–Natal, Durban 4000, South Africa, bDepartment of Biochemistry, University of KwaZulu–Natal, Durban 4000, South Africa, and cSchool of Pharmacy and Pharmacology, University of KwaZulu–Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 8 June 2010; accepted 7 September 2010; online 11 September 2010)

The title compound, C33H36N2O8, is the first example of a disubstituted peptidic pentacycloundecane (PCU) diol. The structure displays an array of inter- and intra­molecular hydrogen bonding by both amide and alcohol functional groups. This hydrogen-bonding system connects the mol­ecules into a three-dimensional network.

Related literature

For examples of PCU cage structures which exhibit C—C bond lengths that deviate from the norm, see: Flippen-Anderson et al. (1991[Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813-817.]); Linden et al. (2005[Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221-o226.]); Kruger et al. (2005[Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968-o3970.], 2006[Kruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42-o44.]). For analogous PCU cage structures and their packing, see: Kruger et al. (2006); Boyle et al. (2007a[Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007a). Acta Cryst. E63, o3977.],b[Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007b). Acta Cryst. E63, o4797.]); Vasquez et al. (2002[Vasquez, T. E., Bergset, J. M., Fierman, M. B., Nelson, A., Roth, J., Khan, S. I. & O'Leary, D. J. (2002). J. Am. Chem. Soc. 124, 2931-2938.]); Anderson et al. (2007[Anderson, C. E., Pickrell, A. J., Sperry, S. L., Vasquez, T. E., Custer, T. G., Fierman, M. B., Lazar, D. C., Brown, Z. W., Iskenderian, W. S., Hickstein, D. D. & O'Leary, D. J. (2007). Heterocyles, 72, 469-495.]). For different cage crystal structures, see: Bott et al. (1998[Bott, S. G., Marchand, A. P., Alihodzic, S. & Kumar, K. A. (1998). J. Chem. Crystallogr. 28, 251-258.]).

[Scheme 1]

Experimental

Crystal data
  • C33H36N2O8

  • Mr = 588.64

  • Orthorhombic, P 21 21 21

  • a = 10.6230 (5) Å

  • b = 14.7773 (6) Å

  • c = 18.2819 (8) Å

  • V = 2869.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.33 × 0.28 × 0.18 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.678, Tmax = 0.875

  • 17910 measured reflections

  • 4968 independent reflections

  • 4892 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.06

  • 4968 reflections

  • 412 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2058 Friedel pairs

  • Flack parameter: −0.02 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.95 (1) 1.90 (1) 2.8399 (18) 172 (2)
N2—H2N⋯O5 0.96 (1) 2.01 (2) 2.7579 (18) 134 (2)
O1—H1O⋯O2 0.96 (1) 1.79 (2) 2.6649 (16) 150 (2)
O5—H5O⋯O1 0.95 (1) 1.58 (1) 2.4886 (16) 158 (3)
O4—H4O⋯O7ii 0.96 (1) 1.84 (2) 2.7425 (18) 154 (2)
O8—H8O⋯O5iii 0.97 (1) 1.68 (1) 2.6501 (17) 177 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The novel compound (I) was synthesized as a part of an ongoing project looking into the biological activity of cage compounds and their derivatives. It can be converted to a diacid and coupled to desired peptides as a potential HIV-1 protease inhibitor. The title compound (I) consists of a large apolar (lipophilic) hydrocarbon skeleton with polar amide and hydroxy units (Fig.1). (I) crystallized with four molecules in the asymmetric unit all of which show shortening and elongation of specific C—C bonds in the cage moiety as observed by previous authors (Flippen-Anderson et al., 1991; Linden et al., 2005; Kruger et al., 2005; Kruger et al., 2006, Boyle et al., 2007a,b). The shortest C—C bond lengths in the cage occur between C1—C7, C1—C2, C4—C5 and C9—C10, with the values ranging between 1.499–1.533 Å. The longest C—C bond length is between C6—C11 with a value of 1.616 (3) Å. This is the first example of a bis-amino acid substituted pentacyloundecane diol reported. We believe it to be the primary example of a PCU diol with aromatic residues positioned close to the cage. As the phenylalanine derivative it is interesting to see that there are no obvious π-stacking contributions to the overall structure. A striking aspect of the structure is its hydrogen bonding arrangements. In previous examples PCU diols were reported as being hydrogen bonded in both intra and intermolecular fashion giving rise to two-dimensional crystal planes (Vasquez et al., 2002). In (I) there are several possibly sites for hydrogen bonding to occur and all of the centers do in fact take an active part. The hydrogen bonding arrangements can be seen in Fig. 2. Intramolecular hydrogen bonding occurs between the amide N(2)–H···O5, the alcohol group O(5)–H···O(1) and the next alcohol O(1)–H···O(2). This is a similar arrangement to that found by Anderson et al., 2007 when three and four alcohol groups respectively were reported. In the case of intermolecular bonding a far more intricate arrangement occurs than previously reported examples. An intermolecular hydrogen bond is generated by the amide group N(1)–H···O(6) (symmetry code; -x + 1, y - 1/2, -z + 1/2). All of the other intermolecular bonds are formed by the carboxylic residues in two distinct arrangements. First, by O(8)–H···O(5) on the PCU cage (symmetry code; -x, y + 1/2, -z + 1/2). Second by O(4)–H···O(7) at the terminals of the two molecules (symmetry code; -x + 1/2, -y + 2, z - 1/2). These interactions create the interlocking arrangements rendering the three dimensional expansion of the structure.

Related literature top

For related literature and examples of PCU cage structures which exhibit C—C bond lengths that deviate from the norm, see: Flippen-Anderson et al. (1991); Linden et al. (2005); Kruger et al. (2005, 2006). For literature relating to analogous PCU cage structures and the exhibited packing, see: Kruger et al. (2006); Boyle et al. (2007a,b); Vasquez et al. (2002); Anderson et al. (2007). For related literature [on what subject?], see: Bott et al. (1998).

Experimental top

A solution of PCU cage diol diacid (0.50 g, 1.7 mmol) in dry DCM (15 ml) was stirred at room temperature for 5 min. To this mixture was added tert-butyl 2-amino-3-phenylpropanoate (1.50 g, 6.8 mmol) and cooled in ice water bath and stirred for 5 min. To the above cooled mixture was added HATU (3.24 g, 8.5 mmol) followed by DIPEA (2.4 ml, 13.6 mmol) as a base. The solution was then slowly brought to room temperature and stirred for 6 h. The crude reaction mixtures was washed with water (100 ml) and then with 10% HCL (100 ml). The organic layer was dried over anhydrous sodium sulfate (Na2SO4) and filtered. The crude product was evaporated to dryness under vacuum using a teflon pump at 40 °C to obtain thick yellow oil. This crude oily product was further dissolved in DCM and TFA (1:1) solvent mixture and stirred overnight. TFA was removed by bubbling air through the peptide and the remaining DCM was removed under vacuum at 30°C. The product was obtained as a yellow oil which was purified by preparative HPLC and solid phase extraction. Crystallization of the product was carried out by dissolving the pure compound in DCM and TFA (1:1, 3 ml) and was stored at 20 °C. The percentage yield of the pure final compound was 67% (0.67 g).

1H NMR (MeOD, 600 MHz): δH 1.05 (1H, d, J = 10.68), 1.39 (1H, d, J = 10.56), 1.67 (1H, d, J = 8.84 Hz), 1.90 (1H, d, J = 8.88 Hz), 2.20–2.36 (7H, m), 2.45–2.46 (2H, m), 2.91–2.99 (2H, m), 3.24–3.29 (2H, m), 4.69–4.71 (1H, m), 4.77–4.87 (1H, m), 7.13–7.16 (1H, m), 7.21–7.30 (9H, m).

IR (film) vmax: 3261.55 cm-1, 2957.06 cm-1, 1758.52 cm-1, 1638.17 cm-1, 1522.71 cm-1, 1191.53 cm-1, 758.74 cm-1, 701.36 cm-1, 489.06 cm-1.

Melting point: 414–415 K. HR ESI m/z: Calc. for C33H36N2O8: [M+H]+ m/z 589.2544. Found: [M+H]+ m/z 589.2541.

Refinement top

The crystal structure was solved by direct methods using SHELXS (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXL (Sheldrick, 2008) using the graphics interface X-SEED (Barbour, 2001). Hydrogen atoms, first located in the difference map, were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1) showing numbering scheme with all hydrogen atoms omitted for clarity. All non-hydrogen atoms are shown as ellipsoids with probability level of 40%.
[Figure 2] Fig. 2. Projection viewed along [100]. Only the hydrogen atoms involved in hydrogen bonds are shown. Other hydrogen atoms are omitted for clarity. The hydrogen bonds are shown as dotted lines.
N,N'-[(8-endo,11-endo- Dihydroxypentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11- diyl)bis(methylenecarbonyl)]di-L-phenylalanine top
Crystal data top
C33H36N2O8Dx = 1.362 Mg m3
Mr = 588.64Melting point: 414 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54199 Å
Hall symbol: P 2ac 2abCell parameters from 4968 reflections
a = 10.6230 (5) Åθ = 3.9–67.3°
b = 14.7773 (6) ŵ = 0.80 mm1
c = 18.2819 (8) ÅT = 100 K
V = 2869.9 (2) Å3Needle, colourless
Z = 40.33 × 0.28 × 0.18 mm
F(000) = 1248
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4968 independent reflections
Radiation source: fine-focus sealed tube4892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
1.2° ϕ scans and ω scansθmax = 67.3°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.678, Tmax = 0.875k = 1717
17910 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.8276P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4968 reflectionsΔρmax = 0.63 e Å3
412 parametersΔρmin = 0.19 e Å3
6 restraintsAbsolute structure: Flack (1983), 2058 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (14)
Crystal data top
C33H36N2O8V = 2869.9 (2) Å3
Mr = 588.64Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6230 (5) ŵ = 0.80 mm1
b = 14.7773 (6) ÅT = 100 K
c = 18.2819 (8) Å0.33 × 0.28 × 0.18 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4968 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4892 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.875Rint = 0.018
17910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.63 e Å3
S = 1.06Δρmin = 0.19 e Å3
4968 reflectionsAbsolute structure: Flack (1983), 2058 Friedel pairs
412 parametersAbsolute structure parameter: 0.02 (14)
6 restraints
Special details top

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 45 mm; combination of ϕ and ω scans of 1.2°, 80 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26914 (11)0.87395 (8)0.16405 (6)0.0244 (2)
H1O0.299 (2)0.8757 (16)0.1144 (7)0.044 (6)*
O20.40843 (12)0.84037 (9)0.04589 (7)0.0301 (3)
O30.60107 (13)0.69337 (9)0.04532 (7)0.0347 (3)
O40.64015 (15)0.80350 (9)0.12717 (7)0.0377 (3)
H4O0.620 (3)0.7565 (13)0.1617 (12)0.057 (7)*
O50.15544 (11)0.99230 (8)0.23485 (6)0.0230 (2)
H5O0.181 (2)0.9478 (13)0.2006 (12)0.053 (7)*
O60.21685 (12)1.25096 (8)0.32318 (7)0.0291 (3)
O70.06852 (12)1.28739 (9)0.24885 (7)0.0317 (3)
O80.03196 (12)1.40531 (8)0.20026 (7)0.0314 (3)
H8O0.035 (2)1.4387 (18)0.2239 (15)0.072 (9)*
N10.61453 (14)0.81718 (10)0.06881 (7)0.0241 (3)
H1N0.6770 (17)0.7959 (15)0.1017 (11)0.042 (6)*
N20.13816 (14)1.17823 (9)0.22652 (7)0.0237 (3)
H2N0.120 (2)1.1205 (10)0.2053 (13)0.046 (6)*
C10.60049 (19)1.03551 (14)0.28800 (11)0.0371 (4)
H1A0.66321.03070.32790.045*
H1B0.62781.08090.25150.045*
C20.56791 (17)0.94515 (12)0.25429 (10)0.0298 (4)
H20.64030.91400.23000.036*
C30.45567 (16)0.96466 (11)0.20319 (9)0.0214 (3)
H30.48250.98460.15330.026*
C40.38679 (15)0.87291 (11)0.20250 (9)0.0220 (3)
C50.37308 (16)0.85663 (11)0.28471 (9)0.0248 (3)
H50.34930.79340.29860.030*
C60.50323 (18)0.88894 (13)0.31455 (10)0.0320 (4)
H60.55560.84450.34240.038*
C70.46939 (18)1.05156 (13)0.31537 (10)0.0307 (4)
H70.45851.11000.34220.037*
C80.38393 (16)1.04175 (11)0.24716 (9)0.0218 (3)
H80.37651.09930.21870.026*
C90.25780 (16)1.01308 (10)0.28335 (9)0.0216 (3)
C100.30414 (16)0.93324 (11)0.32961 (9)0.0232 (3)
H100.24330.91120.36740.028*
C110.43220 (18)0.96760 (13)0.36003 (10)0.0314 (4)
H110.44390.96950.41430.038*
C120.46489 (16)0.79656 (11)0.16772 (9)0.0256 (4)
H12A0.54450.78880.19520.031*
H12B0.41740.73900.17040.031*
C130.49385 (16)0.81869 (11)0.08861 (9)0.0236 (3)
C140.65210 (17)0.84505 (12)0.00387 (9)0.0257 (4)
H140.59830.89780.01790.031*
C150.62849 (17)0.77022 (12)0.05975 (10)0.0276 (4)
C160.78958 (17)0.87780 (12)0.00307 (10)0.0289 (4)
H16A0.84450.82950.01670.035*
H16B0.81720.89130.05360.035*
C170.80165 (16)0.96194 (12)0.04362 (10)0.0265 (4)
C180.85097 (17)0.95746 (12)0.11397 (10)0.0300 (4)
H180.88380.90180.13160.036*
C190.85280 (18)1.03328 (13)0.15874 (11)0.0323 (4)
H190.88561.02900.20700.039*
C200.80709 (18)1.11473 (13)0.13338 (11)0.0328 (4)
H200.80801.16650.16410.039*
C210.76010 (19)1.12083 (13)0.06335 (12)0.0372 (4)
H210.72931.17700.04550.045*
C220.7578 (2)1.04459 (13)0.01874 (11)0.0357 (4)
H220.72561.04930.02960.043*
C230.20364 (16)1.08852 (11)0.33230 (9)0.0243 (3)
H23A0.12091.06860.35130.029*
H23B0.26031.09700.37470.029*
C240.18689 (15)1.17912 (11)0.29397 (9)0.0219 (3)
C250.12644 (16)1.26173 (11)0.18574 (9)0.0235 (3)
H250.20691.29640.18990.028*
C260.01960 (16)1.31895 (11)0.21642 (9)0.0235 (3)
C270.09994 (16)1.24235 (12)0.10448 (9)0.0262 (4)
H27A0.01401.21720.09950.031*
H27B0.10321.29990.07680.031*
C280.19323 (18)1.17667 (12)0.07203 (9)0.0275 (4)
C290.31774 (19)1.20072 (14)0.06228 (10)0.0341 (4)
H290.34431.26050.07370.041*
C300.4044 (2)1.13836 (18)0.03599 (11)0.0459 (5)
H300.49011.15520.03030.055*
C310.3659 (2)1.05186 (16)0.01803 (11)0.0469 (6)
H310.42501.00940.00060.056*
C320.2418 (2)1.02721 (14)0.02720 (10)0.0416 (5)
H320.21510.96770.01520.050*
C330.1566 (2)1.08942 (13)0.05394 (9)0.0328 (4)
H330.07111.07210.06010.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0231 (6)0.0249 (6)0.0253 (6)0.0010 (5)0.0020 (5)0.0041 (5)
O20.0264 (6)0.0355 (7)0.0285 (6)0.0043 (5)0.0009 (5)0.0052 (5)
O30.0393 (7)0.0267 (7)0.0380 (7)0.0044 (6)0.0108 (6)0.0073 (5)
O40.0549 (8)0.0342 (7)0.0240 (6)0.0080 (6)0.0032 (6)0.0060 (5)
O50.0231 (6)0.0207 (6)0.0254 (6)0.0004 (4)0.0005 (4)0.0017 (5)
O60.0350 (7)0.0229 (6)0.0292 (6)0.0004 (5)0.0051 (5)0.0043 (5)
O70.0315 (7)0.0298 (6)0.0338 (6)0.0024 (5)0.0089 (6)0.0043 (5)
O80.0316 (7)0.0207 (6)0.0420 (7)0.0030 (5)0.0059 (5)0.0029 (5)
N10.0251 (7)0.0242 (7)0.0230 (7)0.0002 (6)0.0005 (5)0.0011 (6)
N20.0285 (7)0.0196 (7)0.0230 (7)0.0009 (6)0.0019 (5)0.0012 (6)
C10.0339 (10)0.0427 (10)0.0348 (10)0.0041 (9)0.0032 (8)0.0030 (9)
C20.0249 (9)0.0286 (9)0.0358 (9)0.0007 (7)0.0038 (7)0.0017 (7)
C30.0225 (8)0.0206 (7)0.0210 (8)0.0006 (6)0.0013 (6)0.0008 (6)
C40.0231 (8)0.0194 (7)0.0235 (8)0.0003 (6)0.0022 (6)0.0002 (6)
C50.0275 (8)0.0199 (7)0.0268 (8)0.0020 (6)0.0048 (7)0.0036 (7)
C60.0302 (9)0.0404 (10)0.0253 (8)0.0043 (8)0.0007 (7)0.0044 (8)
C70.0309 (9)0.0382 (10)0.0230 (8)0.0071 (8)0.0012 (7)0.0032 (8)
C80.0264 (8)0.0178 (7)0.0212 (7)0.0012 (6)0.0015 (7)0.0006 (6)
C90.0252 (8)0.0189 (8)0.0208 (7)0.0014 (6)0.0015 (6)0.0006 (6)
C100.0273 (8)0.0210 (8)0.0211 (7)0.0014 (7)0.0054 (6)0.0030 (6)
C110.0335 (10)0.0322 (9)0.0286 (9)0.0016 (8)0.0060 (7)0.0049 (7)
C120.0273 (9)0.0207 (8)0.0288 (9)0.0000 (7)0.0031 (7)0.0011 (7)
C130.0260 (8)0.0183 (7)0.0266 (8)0.0006 (7)0.0011 (7)0.0045 (6)
C140.0277 (9)0.0260 (8)0.0236 (8)0.0016 (7)0.0016 (7)0.0015 (7)
C150.0262 (9)0.0264 (9)0.0303 (9)0.0012 (7)0.0051 (7)0.0040 (7)
C160.0276 (9)0.0297 (9)0.0294 (9)0.0013 (7)0.0024 (7)0.0010 (7)
C170.0239 (8)0.0258 (8)0.0297 (8)0.0047 (7)0.0052 (7)0.0008 (7)
C180.0270 (9)0.0276 (9)0.0354 (9)0.0016 (7)0.0005 (7)0.0052 (8)
C190.0298 (9)0.0365 (10)0.0306 (9)0.0045 (8)0.0027 (8)0.0002 (8)
C200.0282 (9)0.0268 (9)0.0436 (10)0.0066 (7)0.0046 (8)0.0066 (8)
C210.0360 (10)0.0244 (9)0.0512 (12)0.0021 (8)0.0058 (9)0.0059 (8)
C220.0405 (11)0.0323 (10)0.0343 (9)0.0064 (8)0.0089 (8)0.0053 (8)
C230.0278 (8)0.0246 (8)0.0204 (7)0.0030 (7)0.0012 (7)0.0004 (7)
C240.0197 (7)0.0233 (8)0.0228 (7)0.0033 (6)0.0025 (6)0.0026 (7)
C250.0245 (8)0.0210 (8)0.0249 (8)0.0003 (6)0.0002 (7)0.0010 (7)
C260.0265 (8)0.0237 (8)0.0202 (7)0.0001 (7)0.0021 (6)0.0010 (6)
C270.0274 (8)0.0288 (8)0.0225 (8)0.0015 (7)0.0007 (7)0.0032 (7)
C280.0344 (9)0.0306 (9)0.0177 (7)0.0047 (8)0.0015 (6)0.0044 (7)
C290.0338 (10)0.0417 (11)0.0268 (9)0.0012 (8)0.0027 (7)0.0031 (8)
C300.0336 (10)0.0732 (16)0.0308 (10)0.0105 (11)0.0078 (8)0.0135 (10)
C310.0612 (15)0.0535 (13)0.0259 (9)0.0258 (11)0.0061 (9)0.0050 (9)
C320.0649 (14)0.0374 (11)0.0225 (8)0.0111 (10)0.0015 (9)0.0019 (8)
C330.0441 (11)0.0332 (10)0.0210 (8)0.0015 (8)0.0001 (7)0.0007 (7)
Geometric parameters (Å, º) top
O1—C41.434 (2)C10—H101.0000
O1—H1O0.961 (10)C11—H111.0000
O2—C131.239 (2)C12—C131.514 (2)
O3—C151.202 (2)C12—H12A0.9900
O4—C151.333 (2)C12—H12B0.9900
O4—H4O0.961 (10)C14—C151.526 (2)
O5—C91.436 (2)C14—C161.539 (2)
O5—H5O0.949 (10)C14—H141.0000
O6—C241.230 (2)C16—C171.514 (2)
O7—C261.202 (2)C16—H16A0.9900
O8—C261.316 (2)C16—H16B0.9900
O8—H8O0.968 (10)C17—C221.384 (3)
N1—C131.332 (2)C17—C181.390 (3)
N1—C141.447 (2)C18—C191.388 (3)
N1—H1N0.950 (10)C18—H180.9500
N2—C241.337 (2)C19—C201.378 (3)
N2—C251.447 (2)C19—H190.9500
N2—H2N0.956 (10)C20—C211.377 (3)
C1—C71.499 (3)C20—H200.9500
C1—C21.511 (3)C21—C221.391 (3)
C1—H1A0.9900C21—H210.9500
C1—H1B0.9900C22—H220.9500
C2—C61.541 (3)C23—C241.522 (2)
C2—C31.542 (2)C23—H23A0.9900
C2—H21.0000C23—H23B0.9900
C3—C41.541 (2)C25—C261.522 (2)
C3—C81.589 (2)C25—C271.539 (2)
C3—H31.0000C25—H251.0000
C4—C51.529 (2)C27—C281.509 (2)
C4—C121.538 (2)C27—H27A0.9900
C5—C61.561 (3)C27—H27B0.9900
C5—C101.579 (2)C28—C291.381 (3)
C5—H51.0000C28—C331.387 (3)
C6—C111.616 (3)C29—C301.388 (3)
C6—H61.0000C29—H290.9500
C7—C111.537 (3)C30—C311.381 (4)
C7—C81.549 (2)C30—H300.9500
C7—H71.0000C31—C321.378 (4)
C8—C91.553 (2)C31—H310.9500
C8—H81.0000C32—C331.380 (3)
C9—C101.533 (2)C32—H320.9500
C9—C231.541 (2)C33—H330.9500
C10—C111.555 (3)
C4—O1—H1O100.1 (15)C4—C12—H12B109.6
C15—O4—H4O108.7 (16)H12A—C12—H12B108.1
C9—O5—H5O109.6 (17)O2—C13—N1122.52 (16)
C26—O8—H8O108.7 (18)O2—C13—C12120.59 (15)
C13—N1—C14120.67 (14)N1—C13—C12116.83 (15)
C13—N1—H1N120.4 (15)N1—C14—C15111.29 (14)
C14—N1—H1N118.9 (15)N1—C14—C16110.04 (14)
C24—N2—C25120.00 (14)C15—C14—C16112.97 (14)
C24—N2—H2N117.4 (15)N1—C14—H14107.4
C25—N2—H2N122.3 (15)C15—C14—H14107.4
C7—C1—C293.63 (15)C16—C14—H14107.4
C7—C1—H1A113.0O3—C15—O4125.04 (17)
C2—C1—H1A113.0O3—C15—C14125.29 (16)
C7—C1—H1B113.0O4—C15—C14109.65 (14)
C2—C1—H1B113.0C17—C16—C14110.13 (14)
H1A—C1—H1B110.4C17—C16—H16A109.6
C1—C2—C6106.67 (16)C14—C16—H16A109.6
C1—C2—C3105.01 (15)C17—C16—H16B109.6
C6—C2—C3100.90 (14)C14—C16—H16B109.6
C1—C2—H2114.3H16A—C16—H16B108.1
C6—C2—H2114.3C22—C17—C18118.22 (17)
C3—C2—H2114.3C22—C17—C16120.73 (16)
C4—C3—C2101.98 (13)C18—C17—C16120.96 (16)
C4—C3—C8114.03 (13)C19—C18—C17120.83 (17)
C2—C3—C8101.45 (13)C19—C18—H18119.6
C4—C3—H3112.8C17—C18—H18119.6
C2—C3—H3112.8C20—C19—C18120.12 (17)
C8—C3—H3112.8C20—C19—H19119.9
O1—C4—C5113.61 (13)C18—C19—H19119.9
O1—C4—C12105.98 (13)C21—C20—C19119.85 (18)
C5—C4—C12110.02 (13)C21—C20—H20120.1
O1—C4—C3114.11 (13)C19—C20—H20120.1
C5—C4—C3100.11 (13)C20—C21—C22119.90 (18)
C12—C4—C3113.13 (13)C20—C21—H21120.1
C4—C5—C6102.18 (13)C22—C21—H21120.1
C4—C5—C10116.27 (13)C17—C22—C21121.07 (17)
C6—C5—C1090.56 (13)C17—C22—H22119.5
C4—C5—H5114.9C21—C22—H22119.5
C6—C5—H5114.9C24—C23—C9114.38 (13)
C10—C5—H5114.9C24—C23—H23A108.7
C2—C6—C5108.05 (14)C9—C23—H23A108.7
C2—C6—C11100.85 (15)C24—C23—H23B108.7
C5—C6—C1189.21 (13)C9—C23—H23B108.7
C2—C6—H6118.0H23A—C23—H23B107.6
C5—C6—H6118.0O6—C24—N2120.59 (15)
C11—C6—H6118.0O6—C24—C23121.95 (14)
C1—C7—C11106.77 (16)N2—C24—C23117.47 (14)
C1—C7—C8105.12 (15)N2—C25—C26110.36 (13)
C11—C7—C8101.62 (14)N2—C25—C27110.76 (13)
C1—C7—H7114.1C26—C25—C27108.83 (13)
C11—C7—H7114.1N2—C25—H25109.0
C8—C7—H7114.1C26—C25—H25109.0
C7—C8—C9100.84 (13)C27—C25—H25109.0
C7—C8—C3101.14 (13)O7—C26—O8124.36 (16)
C9—C8—C3115.70 (13)O7—C26—C25123.14 (15)
C7—C8—H8112.6O8—C26—C25112.42 (14)
C9—C8—H8112.6C28—C27—C25112.28 (14)
C3—C8—H8112.6C28—C27—H27A109.1
O5—C9—C10114.79 (13)C25—C27—H27A109.1
O5—C9—C23103.32 (13)C28—C27—H27B109.1
C10—C9—C23110.87 (13)C25—C27—H27B109.1
O5—C9—C8116.65 (13)H27A—C27—H27B107.9
C10—C9—C899.67 (13)C29—C28—C33118.50 (18)
C23—C9—C8111.85 (13)C29—C28—C27120.95 (17)
C9—C10—C11103.12 (13)C33—C28—C27120.50 (17)
C9—C10—C5114.46 (13)C28—C29—C30120.6 (2)
C11—C10—C590.82 (13)C28—C29—H29119.7
C9—C10—H10115.1C30—C29—H29119.7
C11—C10—H10115.1C31—C30—C29120.1 (2)
C5—C10—H10115.1C31—C30—H30120.0
C7—C11—C10107.37 (14)C29—C30—H30120.0
C7—C11—C6100.80 (14)C32—C31—C30119.9 (2)
C10—C11—C689.41 (13)C32—C31—H31120.1
C7—C11—H11118.2C30—C31—H31120.1
C10—C11—H11118.2C31—C32—C33119.7 (2)
C6—C11—H11118.2C31—C32—H32120.2
C13—C12—C4110.24 (13)C33—C32—H32120.2
C13—C12—H12A109.6C32—C33—C28121.3 (2)
C4—C12—H12A109.6C32—C33—H33119.3
C13—C12—H12B109.6C28—C33—H33119.3
C7—C1—C2—C652.22 (17)C5—C10—C11—C7100.82 (14)
C7—C1—C2—C354.33 (17)C9—C10—C11—C6115.68 (13)
C1—C2—C3—C4152.25 (15)C5—C10—C11—C60.31 (12)
C6—C2—C3—C441.51 (16)C2—C6—C11—C70.97 (16)
C1—C2—C3—C834.36 (17)C5—C6—C11—C7107.27 (14)
C6—C2—C3—C876.38 (15)C2—C6—C11—C10108.55 (14)
C2—C3—C4—O1174.09 (13)C5—C6—C11—C100.31 (12)
C8—C3—C4—O165.62 (17)O1—C4—C12—C1364.48 (16)
C2—C3—C4—C552.38 (15)C5—C4—C12—C13172.31 (14)
C8—C3—C4—C556.08 (16)C3—C4—C12—C1361.28 (18)
C2—C3—C4—C1264.64 (17)C14—N1—C13—O22.7 (2)
C8—C3—C4—C12173.11 (13)C14—N1—C13—C12174.58 (14)
O1—C4—C5—C6162.75 (13)C4—C12—C13—O251.7 (2)
C12—C4—C5—C678.63 (16)C4—C12—C13—N1125.61 (16)
C3—C4—C5—C640.69 (15)C13—N1—C14—C1579.26 (19)
O1—C4—C5—C1065.99 (18)C13—N1—C14—C16154.73 (15)
C12—C4—C5—C10175.39 (14)N1—C14—C15—O310.9 (3)
C3—C4—C5—C1056.07 (17)C16—C14—C15—O3113.5 (2)
C1—C2—C6—C5125.34 (16)N1—C14—C15—O4167.77 (15)
C3—C2—C6—C515.89 (18)C16—C14—C15—O467.9 (2)
C1—C2—C6—C1132.60 (17)N1—C14—C16—C1764.59 (18)
C3—C2—C6—C1176.85 (16)C15—C14—C16—C17170.36 (14)
C4—C5—C6—C215.59 (17)C14—C16—C17—C2274.1 (2)
C10—C5—C6—C2101.47 (15)C14—C16—C17—C18102.51 (18)
C4—C5—C6—C11116.75 (13)C22—C17—C18—C191.8 (3)
C10—C5—C6—C110.31 (12)C16—C17—C18—C19174.88 (17)
C2—C1—C7—C1153.08 (17)C17—C18—C19—C201.0 (3)
C2—C1—C7—C854.34 (17)C18—C19—C20—C210.3 (3)
C1—C7—C8—C9153.91 (15)C19—C20—C21—C220.6 (3)
C11—C7—C8—C942.77 (16)C18—C17—C22—C211.5 (3)
C1—C7—C8—C334.72 (17)C16—C17—C22—C21175.23 (17)
C11—C7—C8—C376.42 (15)C20—C21—C22—C170.3 (3)
C4—C3—C8—C7108.78 (15)O5—C9—C23—C2471.60 (17)
C2—C3—C8—C70.01 (15)C10—C9—C23—C24164.95 (13)
C4—C3—C8—C90.87 (19)C8—C9—C23—C2454.67 (18)
C2—C3—C8—C9107.93 (15)C25—N2—C24—O63.3 (2)
C7—C8—C9—O5176.46 (13)C25—N2—C24—C23176.58 (14)
C3—C8—C9—O568.37 (18)C9—C23—C24—O6136.58 (16)
C7—C8—C9—C1052.31 (15)C9—C23—C24—N243.3 (2)
C3—C8—C9—C1055.78 (16)C24—N2—C25—C2673.50 (18)
C7—C8—C9—C2364.93 (16)C24—N2—C25—C27165.92 (14)
C3—C8—C9—C23173.02 (13)N2—C25—C26—O725.6 (2)
O5—C9—C10—C11165.98 (13)C27—C25—C26—O796.15 (19)
C23—C9—C10—C1177.43 (16)N2—C25—C26—O8157.55 (14)
C8—C9—C10—C1140.54 (14)C27—C25—C26—O880.72 (17)
O5—C9—C10—C568.97 (18)N2—C25—C27—C2851.65 (19)
C23—C9—C10—C5174.44 (14)C26—C25—C27—C28173.14 (14)
C8—C9—C10—C556.47 (16)C25—C27—C28—C2968.3 (2)
C4—C5—C10—C91.2 (2)C25—C27—C28—C33109.20 (18)
C6—C5—C10—C9105.14 (15)C33—C28—C29—C300.9 (3)
C4—C5—C10—C11103.58 (15)C27—C28—C29—C30176.60 (16)
C6—C5—C10—C110.32 (13)C28—C29—C30—C311.2 (3)
C1—C7—C11—C10127.46 (15)C29—C30—C31—C320.9 (3)
C8—C7—C11—C1017.57 (18)C30—C31—C32—C330.3 (3)
C1—C7—C11—C634.67 (17)C31—C32—C33—C280.1 (3)
C8—C7—C11—C675.21 (16)C29—C28—C33—C320.4 (3)
C9—C10—C11—C714.54 (17)C27—C28—C33—C32177.14 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.95 (1)1.90 (1)2.8399 (18)172 (2)
N2—H2N···O50.96 (1)2.01 (2)2.7579 (18)134 (2)
O1—H1O···O20.96 (1)1.79 (2)2.6649 (16)150 (2)
O5—H5O···O10.95 (1)1.58 (1)2.4886 (16)158 (3)
O4—H4O···O7ii0.96 (1)1.84 (2)2.7425 (18)154 (2)
O8—H8O···O5iii0.97 (1)1.68 (1)2.6501 (17)177 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H36N2O8
Mr588.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.6230 (5), 14.7773 (6), 18.2819 (8)
V3)2869.9 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.33 × 0.28 × 0.18
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.678, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
17910, 4968, 4892
Rint0.018
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections4968
No. of parameters412
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.19
Absolute structureFlack (1983), 2058 Friedel pairs
Absolute structure parameter0.02 (14)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.950 (10)1.896 (10)2.8399 (18)172 (2)
N2—H2N···O50.956 (10)2.006 (19)2.7579 (18)134 (2)
O1—H1O···O20.961 (10)1.787 (15)2.6649 (16)150 (2)
O5—H5O···O10.949 (10)1.584 (14)2.4886 (16)158 (3)
O4—H4O···O7ii0.961 (10)1.844 (15)2.7425 (18)154 (2)
O8—H8O···O5iii0.968 (10)1.683 (10)2.6501 (17)177 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Dr Hong Su (The University of Capetown) for the data collection and structure refinement.

References

First citationAnderson, C. E., Pickrell, A. J., Sperry, S. L., Vasquez, T. E., Custer, T. G., Fierman, M. B., Lazar, D. C., Brown, Z. W., Iskenderian, W. S., Hickstein, D. D. & O'Leary, D. J. (2007). Heterocyles, 72, 469–495.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBott, S. G., Marchand, A. P., Alihodzic, S. & Kumar, K. A. (1998). J. Chem. Crystallogr. 28, 251–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007a). Acta Cryst. E63, o3977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007b). Acta Cryst. E63, o4797.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42–o44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968–o3970.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasquez, T. E., Bergset, J. M., Fierman, M. B., Nelson, A., Roth, J., Khan, S. I. & O'Leary, D. J. (2002). J. Am. Chem. Soc. 124, 2931–2938.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2537-o2538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds