organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Meth­­oxy­benzyl­­idene)aceto­hydrazide

aLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: mailofllp@126.com

(Received 1 September 2010; accepted 24 September 2010; online 30 September 2010)

In the title mol­ecule, C10H12N2O2, the acetohydrazide group is almost planar [within 0.0306 (12) Å] and forms a dihedral angle of 12.15 (14)° with the benzene ring. The meth­oxy group deviates from the attached benzene ring with a C—O—C—C torsion angle of 4.2 (4)°·The mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds and intermolecular C—H⋯O interactions further stabilize the structure.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O2

  • Mr = 192.22

  • Triclinic, [P \overline 1]

  • a = 5.3865 (7) Å

  • b = 8.4609 (11) Å

  • c = 11.3301 (14) Å

  • α = 77.499 (4)°

  • β = 76.516 (5)°

  • γ = 89.101 (5)°

  • V = 489.90 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.985

  • 4827 measured reflections

  • 1694 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.06

  • 1694 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.07 2.899 (2) 163
C6—H6A⋯O1ii 0.96 2.59 3.491 (3) 157
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and are used as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The acetohydrazide group is planar and it forms a dihedral angle of 12.15 (14)° with the benzene ring. deviates from the attached benzene ring by 4.2 (4)°. [C6—O1—C5—C4 = 4.2 (4)°]. The molecule adopts a trans configuration with respect to the CN bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li & Jian, 2008).

The molecules are linked by N—H···O hydrogen bonds into a centrosymmetric dimer. In addition, an intramolecular C—H···N hydrogen bond is observed.

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li & Jian (2008); Tamboura et al. (2009).

Experimental top

2-Methoxybenzaldehyde (1.36 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 465–467 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-(2-Methoxybenzylidene)acetohydrazide top
Crystal data top
C10H12N2O2Z = 2
Mr = 192.22F(000) = 204
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3865 (7) ÅCell parameters from 1694 reflections
b = 8.4609 (11) Åθ = 1.9–25.0°
c = 11.3301 (14) ŵ = 0.09 mm1
α = 77.499 (4)°T = 223 K
β = 76.516 (5)°Block, colourless
γ = 89.101 (5)°0.19 × 0.17 × 0.15 mm
V = 489.90 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1694 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 66
Tmin = 0.982, Tmax = 0.985k = 109
4827 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.265P]
where P = (Fo2 + 2Fc2)/3
1694 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H12N2O2γ = 89.101 (5)°
Mr = 192.22V = 489.90 (11) Å3
Triclinic, P1Z = 2
a = 5.3865 (7) ÅMo Kα radiation
b = 8.4609 (11) ŵ = 0.09 mm1
c = 11.3301 (14) ÅT = 223 K
α = 77.499 (4)°0.19 × 0.17 × 0.15 mm
β = 76.516 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1489 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.985Rint = 0.018
4827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
1694 reflectionsΔρmin = 0.33 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3030 (3)0.1576 (2)0.41553 (14)0.0617 (5)
C100.6401 (4)0.2210 (3)0.2060 (2)0.0533 (6)
H10A0.50000.26860.15790.080*
H10B0.57530.14290.24240.080*
H10C0.73900.30410.27070.080*
N10.5212 (3)0.2232 (2)0.04470 (16)0.0430 (5)
N20.7383 (3)0.1459 (2)0.00176 (16)0.0461 (5)
H20.83190.10140.04740.055*
C10.1048 (5)0.3982 (3)0.1500 (2)0.0522 (6)
H10.15750.41950.06370.063*
C20.1084 (5)0.4724 (3)0.2049 (2)0.0576 (6)
H2A0.19870.54200.15600.069*
C30.1852 (5)0.4423 (3)0.3321 (2)0.0572 (6)
H30.32850.49170.36960.069*
C40.0514 (5)0.3388 (3)0.4053 (2)0.0562 (6)
H40.10480.31970.49150.067*
C50.1626 (4)0.2634 (3)0.3506 (2)0.0462 (5)
C60.2348 (6)0.1311 (4)0.5483 (2)0.0720 (8)
H6A0.35270.05930.58230.108*
H6B0.06510.08350.57910.108*
H6C0.24080.23260.57250.108*
C70.2427 (4)0.2924 (3)0.22085 (19)0.0418 (5)
C80.4680 (4)0.2133 (3)0.16151 (19)0.0421 (5)
H80.57190.15590.20960.050*
C90.8059 (4)0.1389 (3)0.12303 (19)0.0424 (5)
O20.9982 (3)0.0679 (2)0.16141 (14)0.0528 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0686 (11)0.0756 (12)0.0348 (8)0.0287 (9)0.0062 (7)0.0076 (8)
C100.0497 (13)0.0723 (16)0.0378 (12)0.0158 (11)0.0097 (10)0.0134 (11)
N10.0414 (9)0.0489 (11)0.0373 (9)0.0120 (7)0.0048 (7)0.0116 (8)
N20.0431 (10)0.0589 (12)0.0350 (9)0.0181 (8)0.0073 (7)0.0107 (8)
C10.0573 (13)0.0584 (14)0.0412 (12)0.0157 (11)0.0123 (10)0.0118 (10)
C20.0562 (14)0.0611 (15)0.0585 (15)0.0213 (11)0.0178 (11)0.0166 (12)
C30.0508 (13)0.0610 (15)0.0602 (15)0.0174 (11)0.0046 (11)0.0242 (12)
C40.0582 (14)0.0650 (15)0.0409 (12)0.0131 (11)0.0008 (10)0.0162 (11)
C50.0486 (12)0.0489 (12)0.0391 (11)0.0084 (9)0.0070 (9)0.0098 (9)
C60.094 (2)0.083 (2)0.0359 (13)0.0288 (16)0.0138 (13)0.0109 (12)
C70.0422 (11)0.0440 (12)0.0387 (11)0.0064 (9)0.0070 (9)0.0114 (9)
C80.0447 (11)0.0444 (11)0.0360 (11)0.0088 (9)0.0078 (9)0.0088 (9)
C90.0394 (11)0.0494 (12)0.0357 (11)0.0065 (9)0.0039 (8)0.0091 (9)
O20.0479 (9)0.0689 (11)0.0396 (8)0.0221 (7)0.0051 (7)0.0143 (7)
Geometric parameters (Å, º) top
O1—C51.367 (3)C2—C31.371 (3)
O1—C61.430 (3)C2—H2A0.9300
C10—C91.501 (3)C3—C41.385 (4)
C10—H10A0.9600C3—H30.9300
C10—H10B0.9600C4—C51.391 (3)
C10—H10C0.9600C4—H40.9300
N1—C81.272 (3)C5—C71.399 (3)
N1—N21.382 (2)C6—H6A0.9600
N2—C91.351 (3)C6—H6B0.9600
N2—H20.8600C6—H6C0.9600
C1—C21.383 (3)C7—C81.470 (3)
C1—C71.394 (3)C8—H80.9300
C1—H10.9300C9—O21.227 (2)
C5—O1—C6117.66 (19)C3—C4—H4119.8
C9—C10—H10A109.5C5—C4—H4119.8
C9—C10—H10B109.5O1—C5—C4124.3 (2)
H10A—C10—H10B109.5O1—C5—C7116.03 (19)
C9—C10—H10C109.5C4—C5—C7119.7 (2)
H10A—C10—H10C109.5O1—C6—H6A109.5
H10B—C10—H10C109.5O1—C6—H6B109.5
C8—N1—N2115.56 (18)H6A—C6—H6B109.5
C9—N2—N1121.13 (17)O1—C6—H6C109.5
C9—N2—H2119.4H6A—C6—H6C109.5
N1—N2—H2119.4H6B—C6—H6C109.5
C2—C1—C7121.7 (2)C1—C7—C5118.4 (2)
C2—C1—H1119.2C1—C7—C8121.2 (2)
C7—C1—H1119.2C5—C7—C8120.42 (19)
C3—C2—C1119.2 (2)N1—C8—C7120.22 (19)
C3—C2—H2A120.4N1—C8—H8119.9
C1—C2—H2A120.4C7—C8—H8119.9
C2—C3—C4120.6 (2)O2—C9—N2119.71 (19)
C2—C3—H3119.7O2—C9—C10122.64 (19)
C4—C3—H3119.7N2—C9—C10117.65 (18)
C3—C4—C5120.4 (2)
C8—N1—N2—C9175.77 (19)O1—C5—C7—C1179.4 (2)
C7—C1—C2—C30.5 (4)C4—C5—C7—C10.5 (4)
C1—C2—C3—C40.0 (4)O1—C5—C7—C80.9 (3)
C2—C3—C4—C50.3 (4)C4—C5—C7—C8179.8 (2)
C6—O1—C5—C44.2 (4)N2—N1—C8—C7179.40 (17)
C6—O1—C5—C7176.9 (2)C1—C7—C8—N19.4 (3)
C3—C4—C5—O1178.8 (2)C5—C7—C8—N1171.0 (2)
C3—C4—C5—C70.0 (4)N1—N2—C9—O2179.23 (19)
C2—C1—C7—C50.8 (4)N1—N2—C9—C101.3 (3)
C2—C1—C7—C8179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N10.962.272.766 (3)111
N2—H2···O2i0.862.072.899 (2)163
C6—H6A···O1ii0.962.593.491 (3)157
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N2O2
Mr192.22
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)5.3865 (7), 8.4609 (11), 11.3301 (14)
α, β, γ (°)77.499 (4), 76.516 (5), 89.101 (5)
V3)489.90 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.982, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4827, 1694, 1489
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.06
No. of reflections1694
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N10.962.272.766 (3)110.9
N2—H2···O2i0.862.072.899 (2)162.6
C6—H6A···O1ii0.962.593.491 (3)156.5
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds