organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2491-o2492

4-[(E)-(4-Hy­dr­oxy-2-oxo-2H-chromen-3-yl)methyl­­idene­amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 August 2010; accepted 29 August 2010; online 4 September 2010)

In the title compound, C21H17N3O4·H2O, the coumarin ring system is almost planar (r.m.s. deviation = 0.002 Å) and makes dihedral angles of 1.50 (7) and 57.75 (7)° with the pyrazole and phenyl rings, respectively. The dihedral angle between the pyrazole and phenyl rings is 56.60 (9)°. The pyrazole ring adopts a twisted comformation. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds, both of which form S(6) ring motifs. In the crystal, each water mol­ecule is linked to its adjacent organic mol­ecule via pairs of O—H⋯O hydrogen bonds. The packing is further consolidated by pairs of inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into dimers; the dimers are stacked along the b axis.

Related literature

For general background and biological activity of pyran­ocoumarin and substituted coumarin derivatives, see: Aries (1974[Aries, R. (1974). Chem. Abstr. 80, 146152z.]); da Silva et al. (2009[Silva, V. B. da, Kawano, D. F., Carvalho, I., Conceição, E., Freitas, O. & de Paula Silva, C. H. T. (2009). J. Pharm. Pharm. Sci. 12, 378-387.]); Huang et al. (2010[Huang, W. Y., Cai, Y. Z. & Zhang, Y. (2010). Nutr. Cancer, 62, 1-20.]); Skulnick et al. (1997[Skulnick, H. I., Johnson, P. D., Aristoff, P. A., Morris, J. K. & Lovasz, K. D. (1997). J. Med. Chem. 40, 1149-1164.]); Spino et al. (1998[Spino, C., Dodier, M. & Sotheeswaren, S. (1998). Bioorg. Med. Chem. Lett. 8, 3475-3478.]); Kokil et al. (2010[Kokil, G. R., Rewatkar, P. V., Gosain, S., Aggarwal, S., Verma, A., Kalra, A. & Thareja, S. (2010). Lett. Drug Des. Discov. 7, 46-49.]); Abdelhafez et al. (2010[Abdelhafez, O. M., Amin, K. M., Batran, R. Z., Maher, T. J., Nada, S. A. & Sethumadhavan, S. (2010). Bioorg. Med. Chem. 18, 3371-3378.]); Honmantgad et al. (1985[Honmantgad, S. S., Kulkarni, M. V. & Patil, V. D. (1985). Indian J. Chem. Sect. B, 24, 459-461.]); Delporte et al. (1998[Delporte, C., Backhouse, N., Negrete, R., Salinas, P., Rivas, P., Cassels, B. K. & San, F. A. (1998). Phytother. Res. 12, 118-122.]); Ibrahim et al. (2006[Ibrahim, G., Yaro, A. H. & Abdurahman, E. M. (2006). Niger. J. Nat. Prod. Med. 10, 66-68.]); Bissonnette et al. (2009[Bissonnette, E. Y., Tremblay, G. M., Turmel, V., Pirotte, B. & Reboud-Ravaux, M. (2009). Int. Immunopharmacol. 9, 49-54.]). For a related structure, see: Arshad et al. (2010[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446-o1447.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O4·H2O

  • Mr = 393.39

  • Monoclinic, C 2/c

  • a = 35.225 (4) Å

  • b = 6.4269 (7) Å

  • c = 17.6163 (18) Å

  • β = 108.008 (3)°

  • V = 3792.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.19 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.989

  • 35398 measured reflections

  • 5044 independent reflections

  • 3412 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.172

  • S = 1.03

  • 5044 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1OW⋯O4 0.87 2.06 2.923 (2) 173
O1W—H2OW⋯O2 0.88 2.03 2.899 (2) 170
N1—H1N1⋯O3 0.93 (3) 1.79 (3) 2.6132 (18) 146 (2)
C3—H3A⋯O2i 0.93 2.60 3.450 (2) 153
C10—H10A⋯O4 0.93 2.35 3.007 (2) 127
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of pyranocoumarin and substituted coumarin derivatives reported to possess multiple biological activities (Aries, 1974) are used in the treatment of vitiligo (da Silva et al., 2009) and other dermal diseases. Coumarins show various activities such as anticancer (Huang et al., 2010), anti-HIV agents (Skulnick et al., 1997; Spino et al., 1998), antifungal (Kokil et al., 2010), anticoagulant (Abdelhafez et al., 2010), antibacterial (Honmantgad et al., 1985), antipyretic (Delporte et al., 1998), analgesic (Ibrahim et al., 2006) and anti-inflammatory (Bissonnette et al., 2009) properties.

The title compound (Fig. 1) consists of a 4-[(E)-(4-hydroxy-2-oxo-2H- chromen-3-yl)methylidene]amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H- pyrazol-3-one molecule and a water molecule in the asymmetric unit. The coumarin ring system (C1—C9/O1/O2) is almost planar with a maximum deviation of 0.003 (1) Å for atom C7 and makes dihedral angles of 1.50 (7) and 57.75 (7)° with least-squares planes of pyrazole (N2/N3/C11—C13) and phenyl (C14—C19) rings, respectively. The dihedral angle between least-squares planes of pyrazole and phenyl rings is 56.60 (9)°. The comformation of pyrazole ring is twisted as reflected by the puckering parameters, Q = 0.0683 (16) Å and Θ = 22.9 (14)° with torsion angle C12–N2–N3–C13 being -8.12 (18) °. The crystal structure is stabilized by intramolecular N1–H1N1···O3 and C10–H10A···O4 hydrogen bonds, forming S(6) ring motifs (Bernstein et al., 1995).

In the solid state (Fig. 2), water molecules are linked to main molecules via intermolecular O1W–H1OW···O4 and O1W–H2OW···O2 hydrogen bonds. The crystal packing is further consolidated by pairs of intermolecular C3–H3A···O2 hydrogen bonds linking the molecules into dimers which are stacked down the b axis.

Related literature top

For general background to and the biological activity of pyranocoumarin and substituted coumarin derivatives, see: Aries (1974); da Silva et al. (2009); Huang et al. (2010); Skulnick et al. (1997); Spino et al. (1998); Kokil et al. (2010); Abdelhafez et al. (2010); Honmantgad et al. (1985); Delporte et al. (1998); Ibrahim et al. (2006); Bissonnette et al. (2009). For a related structure, see: Arshad et al. (2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

3-Formyl-4-hydroxycoumarin (0.52 mmol, 100 mg) was dissolved in methanol (10 ml) and 4-aminoantipyrine (0.52 mmol, 106 mg) was then added to the mixture. The reaction mixture was refluxed on water bath for 2 h. The precipitated yellow solid was filtered and washed with ethanol to afford the product which was recrystallized from chloroform to reveal yellow blocks of (I) in 70% yield.

Refinement top

Atom H1N1 was located from the difference Fourier map and refined freely. Atoms H1OW and H2OW were located from the difference Fourier map and refined using a riding model, with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located 0.73 Å from C7 and the deepest hole is 0.59 Å from O1W.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-{[(E)-(4-Hydroxy-2-oxo-2H-chromen-3-yl)methylidene]amino}-1,5- dimethyl-2-phenyl-1H-pyrazol-3(2H)-one monohydrate top
Crystal data top
C21H17N3O4·H2OF(000) = 1648
Mr = 393.39Dx = 1.378 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6036 reflections
a = 35.225 (4) Åθ = 2.4–29.9°
b = 6.4269 (7) ŵ = 0.10 mm1
c = 17.6163 (18) ÅT = 100 K
β = 108.008 (3)°Block, yellow
V = 3792.7 (7) Å30.19 × 0.13 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5044 independent reflections
Radiation source: fine-focus sealed tube3412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 29.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4748
Tmin = 0.981, Tmax = 0.989k = 88
35398 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0911P)2 + 2.8654P]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C21H17N3O4·H2OV = 3792.7 (7) Å3
Mr = 393.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.225 (4) ŵ = 0.10 mm1
b = 6.4269 (7) ÅT = 100 K
c = 17.6163 (18) Å0.19 × 0.13 × 0.12 mm
β = 108.008 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3412 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.989Rint = 0.052
35398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
5044 reflectionsΔρmin = 0.66 e Å3
268 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00970 (3)0.25568 (17)0.35782 (6)0.0201 (3)
O20.07480 (4)0.2578 (2)0.41212 (7)0.0269 (3)
O30.00816 (3)0.24563 (17)0.57775 (6)0.0212 (3)
O40.15875 (3)0.2277 (2)0.65776 (7)0.0275 (3)
N10.06937 (4)0.24627 (19)0.64206 (7)0.0160 (3)
N20.13874 (4)0.2275 (2)0.83849 (8)0.0246 (3)
N30.16474 (4)0.2441 (2)0.79281 (8)0.0258 (3)
C10.04266 (5)0.2552 (2)0.42474 (9)0.0183 (3)
C20.02838 (5)0.2533 (2)0.36347 (9)0.0173 (3)
C30.05929 (5)0.2540 (2)0.29108 (9)0.0210 (3)
H3A0.05370.25600.24280.025*
C40.09821 (5)0.2515 (2)0.29271 (10)0.0239 (3)
H4A0.11910.25170.24500.029*
C50.10675 (5)0.2486 (3)0.36506 (10)0.0245 (3)
H5A0.13310.24710.36540.029*
C60.07578 (5)0.2482 (2)0.43627 (10)0.0207 (3)
H6A0.08150.24620.48440.025*
C70.03600 (4)0.2507 (2)0.43656 (9)0.0170 (3)
C80.00234 (5)0.2493 (2)0.51080 (9)0.0160 (3)
C90.03653 (4)0.2519 (2)0.50194 (8)0.0155 (3)
C100.07103 (5)0.2515 (2)0.56840 (9)0.0170 (3)
H10A0.09590.25510.56020.020*
C110.10243 (4)0.2456 (2)0.71053 (8)0.0169 (3)
C120.10082 (5)0.2418 (2)0.78734 (9)0.0188 (3)
C130.14344 (5)0.2403 (3)0.71201 (9)0.0202 (3)
C140.20606 (5)0.1917 (3)0.82639 (10)0.0273 (4)
C150.21734 (6)0.0144 (4)0.87239 (12)0.0404 (5)
H15A0.19820.07130.88260.048*
C160.25772 (6)0.0340 (4)0.90322 (13)0.0462 (5)
H16A0.26570.15260.93430.055*
C170.28592 (5)0.0944 (4)0.88758 (11)0.0376 (5)
H17A0.31290.06060.90740.045*
C180.27429 (6)0.2720 (4)0.84276 (12)0.0389 (5)
H18A0.29350.35890.83340.047*
C190.23402 (5)0.3225 (3)0.81140 (11)0.0348 (4)
H19A0.22610.44220.78090.042*
C200.06538 (5)0.2483 (3)0.81601 (10)0.0260 (4)
H20A0.06600.13150.85040.039*
H20B0.04150.24270.77120.039*
H20C0.06570.37510.84500.039*
C210.15162 (6)0.3240 (4)0.91767 (10)0.0374 (5)
H21A0.13230.29620.94460.056*
H21B0.15410.47160.91220.056*
H21C0.17700.26740.94820.056*
O1W0.15736 (5)0.1509 (3)0.49339 (10)0.0663 (6)
H1OW0.15800.16240.54290.099*
H2OW0.13170.17660.47410.099*
H1N10.0428 (7)0.242 (3)0.6406 (15)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0195 (5)0.0275 (6)0.0130 (5)0.0004 (4)0.0046 (4)0.0006 (4)
O20.0213 (6)0.0427 (8)0.0191 (5)0.0003 (5)0.0096 (4)0.0011 (5)
O30.0200 (5)0.0289 (6)0.0164 (5)0.0001 (5)0.0080 (4)0.0006 (4)
O40.0190 (6)0.0454 (8)0.0194 (5)0.0011 (5)0.0078 (4)0.0002 (5)
N10.0158 (6)0.0177 (6)0.0136 (6)0.0001 (5)0.0033 (5)0.0000 (4)
N20.0210 (7)0.0384 (9)0.0141 (6)0.0003 (6)0.0051 (5)0.0001 (5)
N30.0172 (6)0.0425 (9)0.0164 (6)0.0005 (6)0.0033 (5)0.0015 (6)
C10.0197 (7)0.0196 (7)0.0153 (6)0.0004 (6)0.0049 (5)0.0002 (5)
C20.0186 (7)0.0155 (7)0.0171 (7)0.0002 (6)0.0043 (5)0.0008 (5)
C30.0241 (8)0.0187 (7)0.0170 (7)0.0006 (6)0.0018 (6)0.0003 (6)
C40.0227 (8)0.0184 (7)0.0239 (8)0.0011 (6)0.0023 (6)0.0000 (6)
C50.0173 (7)0.0221 (8)0.0308 (8)0.0003 (6)0.0025 (6)0.0011 (6)
C60.0197 (7)0.0200 (8)0.0224 (7)0.0002 (6)0.0065 (6)0.0007 (6)
C70.0188 (7)0.0150 (7)0.0163 (6)0.0005 (6)0.0039 (5)0.0000 (5)
C80.0188 (7)0.0147 (7)0.0154 (6)0.0001 (5)0.0065 (5)0.0003 (5)
C90.0170 (7)0.0163 (7)0.0133 (6)0.0004 (5)0.0048 (5)0.0002 (5)
C100.0180 (7)0.0166 (7)0.0166 (6)0.0007 (6)0.0056 (5)0.0005 (5)
C110.0167 (7)0.0183 (7)0.0145 (6)0.0005 (6)0.0030 (5)0.0001 (5)
C120.0190 (7)0.0210 (7)0.0158 (6)0.0002 (6)0.0046 (5)0.0002 (5)
C130.0178 (7)0.0259 (8)0.0158 (7)0.0009 (6)0.0037 (5)0.0009 (6)
C140.0185 (8)0.0411 (10)0.0191 (7)0.0001 (7)0.0010 (6)0.0022 (7)
C150.0260 (9)0.0465 (12)0.0448 (11)0.0014 (8)0.0052 (8)0.0132 (9)
C160.0326 (11)0.0538 (14)0.0462 (12)0.0088 (10)0.0034 (9)0.0155 (10)
C170.0217 (8)0.0586 (13)0.0287 (9)0.0060 (9)0.0022 (7)0.0027 (9)
C180.0220 (9)0.0563 (14)0.0369 (10)0.0061 (8)0.0071 (8)0.0008 (9)
C190.0251 (9)0.0437 (11)0.0333 (9)0.0014 (8)0.0056 (7)0.0051 (8)
C200.0256 (8)0.0354 (9)0.0197 (7)0.0016 (7)0.0112 (6)0.0004 (7)
C210.0329 (10)0.0572 (13)0.0189 (8)0.0017 (9)0.0032 (7)0.0078 (8)
O1W0.0463 (10)0.1070 (17)0.0457 (9)0.0156 (10)0.0145 (8)0.0139 (10)
Geometric parameters (Å, º) top
O1—C11.3753 (18)C8—C91.425 (2)
O1—C21.3755 (19)C9—C101.403 (2)
O2—C11.219 (2)C10—H10A0.9300
O3—C81.2583 (17)C11—C121.3718 (19)
O4—C131.2367 (19)C11—C131.437 (2)
N1—C101.3175 (19)C12—C201.485 (2)
N1—C111.3937 (18)C14—C191.381 (3)
N1—H1N10.93 (2)C14—C151.383 (3)
N2—C121.364 (2)C15—C161.392 (3)
N2—N31.3977 (19)C15—H15A0.9300
N2—C211.465 (2)C16—C171.383 (3)
N3—C131.3890 (19)C16—H16A0.9300
N3—C141.432 (2)C17—C181.376 (3)
C1—C91.4416 (19)C17—H17A0.9300
C2—C71.394 (2)C18—C191.392 (3)
C2—C31.398 (2)C18—H18A0.9300
C3—C41.380 (2)C19—H19A0.9300
C3—H3A0.9300C20—H20A0.9600
C4—C51.397 (2)C20—H20B0.9600
C4—H4A0.9300C20—H20C0.9600
C5—C61.385 (2)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.400 (2)C21—H21C0.9600
C6—H6A0.9300O1W—H1OW0.8673
C7—C81.469 (2)O1W—H2OW0.8763
C1—O1—C2121.45 (12)C12—C11—N1125.13 (14)
C10—N1—C11124.94 (14)C12—C11—C13109.24 (13)
C10—N1—H1N1109.0 (16)N1—C11—C13125.59 (13)
C11—N1—H1N1126.1 (16)N2—C12—C11108.80 (14)
C12—N2—N3107.25 (12)N2—C12—C20122.12 (14)
C12—N2—C21123.53 (15)C11—C12—C20129.07 (14)
N3—N2—C21116.80 (14)O4—C13—N3124.51 (15)
C13—N3—N2110.25 (13)O4—C13—C11131.58 (14)
C13—N3—C14125.28 (14)N3—C13—C11103.87 (13)
N2—N3—C14120.50 (13)C19—C14—C15121.39 (17)
O2—C1—O1115.41 (13)C19—C14—N3118.14 (17)
O2—C1—C9126.19 (14)C15—C14—N3120.47 (17)
O1—C1—C9118.40 (13)C14—C15—C16119.12 (19)
O1—C2—C7122.50 (13)C14—C15—H15A120.4
O1—C2—C3115.85 (14)C16—C15—H15A120.4
C7—C2—C3121.64 (15)C17—C16—C15119.9 (2)
C4—C3—C2118.66 (15)C17—C16—H16A120.0
C4—C3—H3A120.7C15—C16—H16A120.0
C2—C3—H3A120.7C18—C17—C16120.30 (18)
C3—C4—C5120.96 (14)C18—C17—H17A119.9
C3—C4—H4A119.5C16—C17—H17A119.9
C5—C4—H4A119.5C17—C18—C19120.48 (19)
C6—C5—C4119.67 (15)C17—C18—H18A119.8
C6—C5—H5A120.2C19—C18—H18A119.8
C4—C5—H5A120.2C14—C19—C18118.77 (19)
C5—C6—C7120.71 (15)C14—C19—H19A120.6
C5—C6—H6A119.6C18—C19—H19A120.6
C7—C6—H6A119.6C12—C20—H20A109.5
C2—C7—C6118.36 (14)C12—C20—H20B109.5
C2—C7—C8119.30 (14)H20A—C20—H20B109.5
C6—C7—C8122.34 (14)C12—C20—H20C109.5
O3—C8—C9122.90 (14)H20A—C20—H20C109.5
O3—C8—C7120.93 (14)H20B—C20—H20C109.5
C9—C8—C7116.16 (13)N2—C21—H21A109.5
C10—C9—C8121.49 (13)N2—C21—H21B109.5
C10—C9—C1116.33 (13)H21A—C21—H21B109.5
C8—C9—C1122.18 (13)N2—C21—H21C109.5
N1—C10—C9122.09 (14)H21A—C21—H21C109.5
N1—C10—H10A119.0H21B—C21—H21C109.5
C9—C10—H10A119.0H1OW—O1W—H2OW94.6
C12—N2—N3—C138.12 (18)C8—C9—C10—N10.8 (2)
C21—N2—N3—C13151.71 (16)C1—C9—C10—N1179.23 (14)
C12—N2—N3—C14166.83 (15)C10—N1—C11—C12179.45 (15)
C21—N2—N3—C1449.6 (2)C10—N1—C11—C133.2 (2)
C2—O1—C1—O2179.86 (13)N3—N2—C12—C116.06 (18)
C2—O1—C1—C90.1 (2)C21—N2—C12—C11146.60 (17)
C1—O1—C2—C70.1 (2)N3—N2—C12—C20174.70 (15)
C1—O1—C2—C3179.95 (13)C21—N2—C12—C2034.2 (3)
O1—C2—C3—C4179.93 (13)N1—C11—C12—N2175.77 (14)
C7—C2—C3—C40.1 (2)C13—C11—C12—N21.98 (18)
C2—C3—C4—C50.1 (2)N1—C11—C12—C203.4 (3)
C3—C4—C5—C60.0 (2)C13—C11—C12—C20178.85 (16)
C4—C5—C6—C70.1 (2)N2—N3—C13—O4171.06 (16)
O1—C2—C7—C6179.92 (13)C14—N3—C13—O413.6 (3)
C3—C2—C7—C60.1 (2)N2—N3—C13—C116.66 (17)
O1—C2—C7—C80.3 (2)C14—N3—C13—C11164.13 (16)
C3—C2—C7—C8179.73 (14)C12—C11—C13—O4174.61 (18)
C5—C6—C7—C20.1 (2)N1—C11—C13—O43.1 (3)
C5—C6—C7—C8179.68 (15)C12—C11—C13—N32.89 (17)
C2—C7—C8—O3179.56 (14)N1—C11—C13—N3179.38 (14)
C6—C7—C8—O30.0 (2)C13—N3—C14—C1968.3 (2)
C2—C7—C8—C90.3 (2)N2—N3—C14—C19136.40 (18)
C6—C7—C8—C9179.91 (14)C13—N3—C14—C15111.6 (2)
O3—C8—C9—C100.3 (2)N2—N3—C14—C1543.7 (2)
C7—C8—C9—C10179.79 (13)C19—C14—C15—C160.9 (3)
O3—C8—C9—C1179.74 (14)N3—C14—C15—C16179.04 (19)
C7—C8—C9—C10.2 (2)C14—C15—C16—C170.1 (3)
O2—C1—C9—C100.1 (2)C15—C16—C17—C181.1 (3)
O1—C1—C9—C10180.00 (13)C16—C17—C18—C191.2 (3)
O2—C1—C9—C8179.89 (15)C15—C14—C19—C180.8 (3)
O1—C1—C9—C80.0 (2)N3—C14—C19—C18179.13 (17)
C11—N1—C10—C9180.00 (14)C17—C18—C19—C140.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O40.872.062.923 (2)173
O1W—H2OW···O20.882.032.899 (2)170
N1—H1N1···O30.93 (3)1.79 (3)2.6132 (18)146 (2)
C3—H3A···O2i0.932.603.450 (2)153
C10—H10A···O40.932.353.007 (2)127
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17N3O4·H2O
Mr393.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)35.225 (4), 6.4269 (7), 17.6163 (18)
β (°) 108.008 (3)
V3)3792.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.981, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
35398, 5044, 3412
Rint0.052
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.172, 1.03
No. of reflections5044
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.66

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O40.872.062.923 (2)173
O1W—H2OW···O20.882.032.899 (2)170
N1—H1N1···O30.93 (3)1.79 (3)2.6132 (18)146 (2)
C3—H3A···O2i0.932.603.450 (2)153
C10—H10A···O40.932.353.007 (2)127
Symmetry code: (i) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and Research University Grants No. 1001/PKIMIA/811134 and No. 1001/PFIZIK/811160. MA also thanks USM for the award of post doctoral fellowship and CKQ also thanks USM for a research fellowship.

References

First citationAbdelhafez, O. M., Amin, K. M., Batran, R. Z., Maher, T. J., Nada, S. A. & Sethumadhavan, S. (2010). Bioorg. Med. Chem. 18, 3371–3378.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAries, R. (1974). Chem. Abstr. 80, 146152z.  Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBissonnette, E. Y., Tremblay, G. M., Turmel, V., Pirotte, B. & Reboud-Ravaux, M. (2009). Int. Immunopharmacol. 9, 49–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDelporte, C., Backhouse, N., Negrete, R., Salinas, P., Rivas, P., Cassels, B. K. & San, F. A. (1998). Phytother. Res. 12, 118–122.  CrossRef CAS Google Scholar
First citationHonmantgad, S. S., Kulkarni, M. V. & Patil, V. D. (1985). Indian J. Chem. Sect. B, 24, 459–461.  Google Scholar
First citationHuang, W. Y., Cai, Y. Z. & Zhang, Y. (2010). Nutr. Cancer, 62, 1–20.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIbrahim, G., Yaro, A. H. & Abdurahman, E. M. (2006). Niger. J. Nat. Prod. Med. 10, 66–68.  CAS Google Scholar
First citationKokil, G. R., Rewatkar, P. V., Gosain, S., Aggarwal, S., Verma, A., Kalra, A. & Thareja, S. (2010). Lett. Drug Des. Discov. 7, 46–49.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, V. B. da, Kawano, D. F., Carvalho, I., Conceição, E., Freitas, O. & de Paula Silva, C. H. T. (2009). J. Pharm. Pharm. Sci. 12, 378–387.  PubMed Google Scholar
First citationSkulnick, H. I., Johnson, P. D., Aristoff, P. A., Morris, J. K. & Lovasz, K. D. (1997). J. Med. Chem. 40, 1149–1164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpino, C., Dodier, M. & Sotheeswaren, S. (1998). Bioorg. Med. Chem. Lett. 8, 3475–3478.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2491-o2492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds