metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1237-m1238

catena-Poly[silver(I)-bis­­[μ-bis­­(di­phenyl­phosphino)methane-κ2P:P′]-μ-thio­cyanato-κ2S:S-silver(I)-μ-thio­cyanato-κ2S:N]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 24 August 2010; accepted 5 September 2010; online 11 September 2010)

The title compound, [Ag(NCS)(C25H22P2)]n, contains two Ag+ ions, two thio­cyanate ions and two bis­(diphenyl­phosphino)methane (dppm) ligands in the asymmetric unit. One of the thiocyanate ions bridges the two Ag+ ions in a μ2-mode from its S atom and the two dppm ligands bridge the silver ions in a μ1,μ1 mode. The remaining SCN ion bridges the binuclear units via its N and S atoms, generating a one-dimensional polymer propagating in [[\overline{1}]01]: the resulting AgP2SN and AgP2S2 coordination geometries could be described as distorted tetra­hedral.

Related literature

For general background to silver(I) complexes, see: Awaleh et al. (2007[Awaleh, M. O., Badia, A. & Brisse, F. (2007). Inorg. Chem. 46, 3185-3191.]); Liu et al. (2008[Liu, C. S., Chen, P. Q., Chang, Z., Wang, J. J., Yan, L. F., Sun, H. W., Bu, X. H., Lin, Z. M. & Batten, S. R. (2008). Inorg. Chem. Commun. 11, 159-163.]). For silver(I) complexes containing phosphine ligands and coordinated anions, see: Jin, Song et al. (2010[Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62-65.]); Jin, Hu et al. (2010[Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441-445.]). For related structures, see: Jin et al. (2008[Jin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 78-81.]); Cingolani et al. (2005[Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748-762.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NCS)(C25H22P2)]

  • Mr = 550.32

  • Monoclinic, P 21 /n

  • a = 13.0712 (14) Å

  • b = 23.080 (2) Å

  • c = 15.6340 (16) Å

  • β = 93.470 (1)°

  • V = 4708.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.43 × 0.34 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.721

  • 23675 measured reflections

  • 8306 independent reflections

  • 4539 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.168

  • S = 1.02

  • 8306 reflections

  • 559 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—P1 2.450 (2)
Ag1—P3 2.451 (2)
Ag1—S1 2.670 (3)
Ag1—S2 2.768 (3)
Ag2—N2i 2.429 (9)
Ag2—P2 2.497 (2)
Ag2—P4 2.498 (2)
Ag2—S1 2.668 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many research efforts have been devoted to the silver(I) complexes due to their fascinating structures and potential applications in the field of photo-sensitizer, semi-conducting or catalytic devices (Awaleh et al., 2007, Liu et al., 2008). Recently, we have found some silver(I) complexes containing phosphine ligands and coordinated anions (Jin, Song et al., 2010, Jin, Hu et al., 2010). Continuing these efforts, we obtain a new one-dimensional polymer [Ag2(dppm)2(SCN)2] by using AgSCN, dppm and 1,10-Phenanthroline(phen).

The crystal structural analysis shows that SCN- bridges the [Ag2(dppm)2(SCN)] binuclear units to give rise to a one-dimensional polymer. In the binclear unit, two dppm ligands lock two silver atoms to form a circular dimer, where S atom of SCN- behaving as bridging ligand links two silver atoms. Two silver atoms are four-coordinated. Ag1 is coordinated by two P-atoms from two dppm ligands, two S atoms from two thiocyanide anions while Ag2 is coordinated by two P-atoms from two dppm ligands, one S-atom and one N-atom from two thiocyanide anions. In the title compound, the P—Ag1—S angles are in the range 104.55 (9)–108.67 (8)°, and the P—Ag1—P angle is 127.18 (8)°, S—Ag1—S is 99.11 (8)°; while N—Ag2—P are in the range 101.4 (2)–113.2 (2)°, P—Ag2—P is 126.43 (8)°, N—Ag2—S are in the range 101.5 (3)–106.66 (8)°. This confirms the distored tetrahedral environment around two silver (I) atoms. The distance of the two silver atoms (3.484 Å) is 0.048 Å longer than the sum of the covalent radii(3.44 Å), which indicates that there exists weak Ag···Ag interaction. The bond lengths of S1—Ag1 and S1—Ag2 are 2.670 and 2.668 Å, respectively.The angles of N1—C1—S1 and N2—C2—S2 are 179.55 and 165.33°, respectively. The angle of Ag1—S1—Ag2 are 10.92° shorter than that reported for [Ag2(dpam)2(SCN)2](92.39°) (Cingolani et al., 2005).

The similar compound [Ag4(SCN)4(dppm)2] (Jin et al.,2008) is prepared by the similar reaction by using quinoline in place of phen. Though both quinoline and phen don't take part in coordination, this two ligands effect the final structures of the products. This confirms again that different nitrogen heterocyclic ligands lead to different structures due to the subtle interation of the nitrogen heterocyclic ligands with silver ions. (Jin, Hu et al., 2010).

Related literature top

For general background to silver(I) complexes, see: Awaleh et al. (2007); Liu et al. (2008). For silver(I) complexes containing phosphine ligands and coordinated anions, see: Jin, Song et al. (2010); Jin, Hu et al. (2010). For related structures, see: Jin et al. (2008); Cingolani et al. (2005).

Experimental top

A mixture of AgSCN (0.0332 g, 0.2 mmol), 1,10-Phenanthroline (0.0792, 0.4 mmol) and bis(diphenylphosphino)methane (0.1532 g, 0.4 mmol) in the molar ratio 1:2:2 in CH3OH/CH2Cl2 was stirred for 5 h at ambient temperature. After filtration, the filtrate was allowed to stand still. Slow evaportation of the solvent yielded colourless blocks of (I). Analysis found(percentage): C 56.70, H 4.00, N 2.54; calculated: C 56.21, H 3.72, N 2.24.

Refinement top

All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of a basic unit of the title complex. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Perspective view of a one-dimensional polymer of the title complex.
catena-Poly[silver(I)-bis[µ-bis(diphenylphosphino)methane- κ2P:P']-µ-thiocyanato-κ2S:S-silver(I)- µ-thiocyanato-κ2S:N] top
Crystal data top
[Ag(NCS)(C25H22P2)]F(000) = 2224
Mr = 550.32Dx = 1.553 Mg m3
Dm = 1.553 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4221 reflections
a = 13.0712 (14) Åθ = 2.3–23.1°
b = 23.080 (2) ŵ = 1.10 mm1
c = 15.6340 (16) ÅT = 298 K
β = 93.470 (1)°Block, colourless
V = 4708.0 (8) Å30.43 × 0.34 × 0.32 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
8306 independent reflections
Radiation source: fine-focus sealed tube4539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.650, Tmax = 0.721k = 2722
23675 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0414P)2 + 37.553P]
where P = (Fo2 + 2Fc2)/3
8306 reflections(Δ/σ)max = 0.001
559 parametersΔρmax = 1.34 e Å3
1 restraintΔρmin = 1.31 e Å3
Crystal data top
[Ag(NCS)(C25H22P2)]V = 4708.0 (8) Å3
Mr = 550.32Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.0712 (14) ŵ = 1.10 mm1
b = 23.080 (2) ÅT = 298 K
c = 15.6340 (16) Å0.43 × 0.34 × 0.32 mm
β = 93.470 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8306 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4539 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.721Rint = 0.056
23675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.168H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0414P)2 + 37.553P]
where P = (Fo2 + 2Fc2)/3
8306 reflectionsΔρmax = 1.34 e Å3
559 parametersΔρmin = 1.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.67704 (5)0.24042 (3)0.55934 (5)0.0460 (2)
Ag20.49477 (5)0.24103 (3)0.71296 (4)0.0422 (2)
N10.7422 (7)0.1363 (5)0.7966 (7)0.090 (3)
N20.9491 (8)0.2412 (4)0.3589 (6)0.084 (3)
P10.60071 (16)0.33099 (9)0.50436 (14)0.0342 (5)
P20.43500 (16)0.33225 (9)0.64005 (14)0.0343 (5)
P30.61866 (16)0.14163 (9)0.52595 (14)0.0336 (5)
P40.45647 (17)0.14001 (9)0.66334 (15)0.0379 (5)
S10.69887 (17)0.24681 (11)0.73000 (16)0.0488 (6)
S20.8817 (2)0.24072 (14)0.5231 (2)0.0715 (8)
C10.7242 (7)0.1814 (5)0.7699 (7)0.054 (3)
C20.9092 (8)0.2425 (4)0.4226 (7)0.052 (2)
C30.4656 (6)0.3405 (4)0.5286 (5)0.040 (2)
H3A0.44400.37890.50970.048*
H3B0.42480.31280.49460.048*
C40.5943 (7)0.3337 (4)0.3880 (6)0.044 (2)
C50.6844 (8)0.3277 (4)0.3492 (7)0.059 (3)
H50.74590.32560.38220.071*
C60.6847 (8)0.3246 (5)0.2606 (7)0.069 (3)
H60.74650.32110.23460.083*
C70.5942 (8)0.3266 (5)0.2106 (7)0.066 (3)
H70.59470.32440.15130.079*
C80.5053 (8)0.3316 (4)0.2487 (6)0.058 (3)
H80.44380.33200.21560.069*
C90.5049 (7)0.3363 (4)0.3366 (6)0.049 (2)
H90.44280.34130.36180.059*
C100.6664 (7)0.3976 (4)0.5373 (6)0.041 (2)
C110.7642 (7)0.3934 (4)0.5762 (6)0.056 (3)
H110.79460.35720.58370.067*
C120.8174 (8)0.4423 (4)0.6041 (7)0.063 (3)
H120.88310.43880.63000.076*
C130.7733 (8)0.4958 (4)0.5936 (7)0.061 (3)
H130.80820.52870.61370.073*
C140.6787 (8)0.5008 (4)0.5539 (7)0.061 (3)
H140.64940.53730.54600.073*
C150.6250 (7)0.4521 (4)0.5250 (6)0.051 (2)
H150.56060.45620.49710.061*
C160.2954 (7)0.3366 (4)0.6316 (6)0.045 (2)
C170.2480 (7)0.3291 (4)0.7076 (7)0.058 (3)
H170.28700.32470.75900.070*
C180.1413 (8)0.3280 (5)0.7065 (8)0.073 (3)
H180.10860.32230.75710.088*
C190.0856 (9)0.3353 (5)0.6317 (9)0.072 (3)
H190.01440.33520.63170.086*
C200.1301 (8)0.3428 (5)0.5569 (8)0.072 (3)
H200.09020.34670.50600.086*
C210.2356 (7)0.3445 (4)0.5569 (7)0.060 (3)
H210.26680.35100.50590.072*
C220.4750 (7)0.4014 (4)0.6861 (6)0.041 (2)
C230.5642 (7)0.4043 (4)0.7378 (6)0.051 (2)
H230.59980.37060.75290.062*
C240.6009 (8)0.4577 (4)0.7673 (7)0.064 (3)
H240.66140.45950.80170.077*
C250.5495 (9)0.5072 (5)0.7463 (7)0.063 (3)
H250.57580.54280.76490.076*
C260.4596 (8)0.5049 (4)0.6982 (6)0.056 (3)
H260.42320.53870.68560.067*
C270.4220 (7)0.4523 (4)0.6680 (6)0.048 (2)
H270.36040.45100.63510.058*
C280.5626 (7)0.1018 (4)0.6134 (6)0.047 (2)
H28A0.61620.09380.65740.056*
H28B0.53720.06480.59140.056*
C290.7291 (7)0.0990 (4)0.4987 (6)0.044 (2)
C300.8073 (7)0.0897 (4)0.5609 (7)0.057 (3)
H300.79580.09730.61800.068*
C310.9021 (8)0.0694 (5)0.5398 (8)0.069 (3)
H310.95470.06480.58210.083*
C320.9181 (9)0.0561 (5)0.4572 (8)0.069 (3)
H320.98120.04150.44290.082*
C330.8420 (9)0.0641 (5)0.3955 (7)0.069 (3)
H330.85310.05460.33900.083*
C340.7467 (8)0.0864 (4)0.4158 (7)0.059 (3)
H340.69560.09250.37280.071*
C350.5264 (7)0.1321 (4)0.4371 (6)0.048 (2)
C360.4939 (8)0.0789 (5)0.4059 (7)0.068 (3)
H360.52270.04530.42960.081*
C370.4185 (9)0.0750 (5)0.3393 (8)0.087 (4)
H370.39710.03870.31920.104*
C380.3753 (8)0.1241 (5)0.3028 (7)0.072 (3)
H380.32280.12130.26010.087*
C390.4105 (8)0.1773 (5)0.3301 (7)0.064 (3)
H390.38410.21080.30420.077*
C400.4854 (7)0.1809 (4)0.3963 (6)0.055 (3)
H400.50890.21730.41410.066*
C410.3476 (7)0.1354 (4)0.5868 (6)0.050 (2)
C420.3018 (8)0.1858 (4)0.5572 (6)0.057 (3)
H420.32960.22080.57650.069*
C430.2166 (8)0.1872 (5)0.5002 (7)0.068 (3)
H430.18830.22250.48280.082*
C440.1741 (8)0.1366 (5)0.4695 (8)0.075 (3)
H440.11360.13690.43490.090*
C450.2227 (10)0.0855 (6)0.4910 (9)0.093 (4)
H450.19650.05050.46980.111*
C460.3107 (9)0.0863 (5)0.5444 (8)0.080 (4)
H460.34740.05200.55220.096*
C470.4310 (8)0.0900 (4)0.7463 (7)0.058 (3)
C480.4558 (10)0.1033 (5)0.8299 (8)0.086 (4)
H480.48510.13940.84190.103*
C490.4401 (11)0.0665 (6)0.8987 (9)0.101 (5)
H490.45870.07860.95420.121*
C500.3977 (10)0.0128 (5)0.8854 (8)0.086 (4)
H500.38750.01220.93070.103*
C510.3709 (12)0.0023 (6)0.8029 (10)0.108 (5)
H510.34120.03830.79080.130*
C520.3882 (11)0.0358 (5)0.7370 (9)0.095 (4)
H520.36900.02370.68160.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0510 (4)0.0350 (4)0.0509 (5)0.0026 (3)0.0054 (3)0.0020 (3)
Ag20.0420 (4)0.0364 (4)0.0477 (4)0.0003 (3)0.0025 (3)0.0017 (3)
N10.071 (7)0.083 (8)0.114 (9)0.002 (6)0.006 (6)0.033 (7)
N20.109 (8)0.087 (7)0.062 (7)0.013 (6)0.052 (6)0.016 (5)
P10.0366 (12)0.0327 (12)0.0335 (13)0.0025 (10)0.0034 (10)0.0027 (9)
P20.0357 (12)0.0317 (12)0.0360 (13)0.0029 (10)0.0056 (10)0.0000 (9)
P30.0361 (12)0.0326 (12)0.0320 (13)0.0006 (10)0.0018 (10)0.0012 (9)
P40.0375 (12)0.0330 (11)0.0441 (14)0.0037 (10)0.0097 (11)0.0011 (10)
S10.0394 (12)0.0609 (16)0.0453 (14)0.0077 (11)0.0038 (10)0.0030 (12)
S20.0556 (16)0.094 (2)0.0655 (19)0.0031 (16)0.0120 (14)0.0011 (16)
C10.039 (5)0.060 (7)0.062 (7)0.001 (5)0.002 (5)0.010 (5)
C20.060 (6)0.042 (6)0.057 (7)0.003 (5)0.012 (5)0.002 (5)
C30.044 (5)0.038 (5)0.038 (5)0.001 (4)0.003 (4)0.002 (4)
C40.046 (5)0.048 (6)0.039 (5)0.000 (4)0.008 (4)0.002 (4)
C50.054 (6)0.077 (8)0.047 (7)0.005 (5)0.010 (5)0.003 (5)
C60.058 (7)0.101 (9)0.051 (7)0.007 (6)0.018 (6)0.004 (6)
C70.068 (7)0.085 (8)0.044 (7)0.004 (6)0.009 (6)0.001 (6)
C80.055 (6)0.074 (7)0.044 (6)0.001 (5)0.001 (5)0.002 (5)
C90.047 (6)0.060 (6)0.041 (6)0.004 (5)0.007 (5)0.001 (5)
C100.050 (6)0.036 (5)0.038 (5)0.005 (4)0.006 (4)0.002 (4)
C110.058 (6)0.049 (6)0.059 (7)0.003 (5)0.008 (5)0.000 (5)
C120.061 (7)0.056 (7)0.070 (8)0.014 (6)0.011 (6)0.002 (6)
C130.071 (8)0.048 (7)0.062 (7)0.014 (6)0.001 (6)0.010 (5)
C140.074 (8)0.042 (6)0.067 (8)0.006 (5)0.006 (6)0.003 (5)
C150.055 (6)0.043 (6)0.055 (7)0.001 (5)0.002 (5)0.006 (5)
C160.038 (5)0.041 (5)0.058 (7)0.002 (4)0.005 (5)0.001 (4)
C170.045 (6)0.064 (7)0.066 (7)0.001 (5)0.008 (5)0.005 (5)
C180.053 (7)0.084 (9)0.085 (10)0.001 (6)0.021 (7)0.007 (7)
C190.045 (6)0.078 (8)0.092 (10)0.005 (6)0.007 (7)0.011 (7)
C200.048 (7)0.080 (8)0.085 (9)0.010 (6)0.009 (6)0.005 (7)
C210.049 (6)0.063 (7)0.068 (8)0.004 (5)0.001 (5)0.002 (6)
C220.045 (5)0.038 (5)0.042 (6)0.001 (4)0.006 (4)0.001 (4)
C230.060 (6)0.044 (6)0.049 (6)0.002 (5)0.004 (5)0.001 (5)
C240.069 (7)0.056 (7)0.065 (8)0.007 (6)0.010 (6)0.009 (6)
C250.081 (8)0.051 (7)0.057 (7)0.014 (6)0.008 (6)0.006 (5)
C260.077 (8)0.038 (6)0.053 (7)0.003 (5)0.008 (6)0.001 (5)
C270.057 (6)0.042 (6)0.046 (6)0.002 (5)0.003 (5)0.001 (4)
C280.050 (6)0.043 (5)0.048 (6)0.003 (4)0.003 (5)0.003 (4)
C290.045 (5)0.047 (6)0.041 (6)0.004 (4)0.006 (5)0.002 (4)
C300.051 (6)0.064 (7)0.055 (7)0.011 (5)0.005 (5)0.007 (5)
C310.055 (7)0.080 (8)0.073 (9)0.011 (6)0.002 (6)0.010 (6)
C320.059 (7)0.075 (8)0.073 (9)0.012 (6)0.014 (6)0.001 (6)
C330.077 (8)0.074 (8)0.059 (8)0.016 (6)0.020 (6)0.007 (6)
C340.060 (7)0.065 (7)0.052 (7)0.015 (5)0.005 (5)0.004 (5)
C350.046 (5)0.046 (6)0.049 (6)0.000 (4)0.008 (5)0.003 (4)
C360.072 (7)0.059 (7)0.069 (8)0.005 (6)0.025 (6)0.009 (6)
C370.089 (9)0.076 (9)0.089 (10)0.013 (7)0.035 (8)0.004 (7)
C380.061 (7)0.081 (9)0.071 (8)0.002 (6)0.022 (6)0.011 (7)
C390.060 (7)0.072 (8)0.059 (7)0.016 (6)0.013 (6)0.010 (6)
C400.052 (6)0.057 (7)0.054 (7)0.007 (5)0.006 (5)0.006 (5)
C410.046 (6)0.048 (6)0.055 (6)0.006 (5)0.003 (5)0.001 (5)
C420.061 (7)0.049 (6)0.060 (7)0.004 (5)0.010 (5)0.002 (5)
C430.065 (7)0.068 (8)0.070 (8)0.002 (6)0.014 (6)0.000 (6)
C440.058 (7)0.076 (9)0.087 (9)0.000 (6)0.021 (6)0.004 (7)
C450.083 (9)0.080 (9)0.110 (11)0.014 (7)0.033 (8)0.005 (8)
C460.081 (9)0.065 (8)0.090 (10)0.004 (6)0.022 (7)0.000 (7)
C470.075 (7)0.045 (6)0.055 (7)0.015 (5)0.016 (6)0.001 (5)
C480.114 (11)0.071 (8)0.070 (9)0.033 (7)0.012 (8)0.020 (7)
C490.143 (13)0.088 (10)0.071 (9)0.031 (9)0.012 (9)0.023 (7)
C500.115 (11)0.073 (9)0.070 (9)0.022 (8)0.009 (8)0.024 (7)
C510.158 (15)0.080 (10)0.089 (11)0.050 (9)0.024 (10)0.015 (8)
C520.134 (12)0.076 (9)0.076 (9)0.034 (8)0.013 (9)0.006 (7)
Geometric parameters (Å, º) top
Ag1—P12.450 (2)C21—H210.9300
Ag1—P32.451 (2)C22—C231.379 (12)
Ag1—S12.670 (3)C22—C271.384 (12)
Ag1—S22.768 (3)C23—C241.392 (13)
Ag2—N2i2.429 (9)C23—H230.9300
Ag2—P22.497 (2)C24—C251.355 (14)
Ag2—P42.498 (2)C24—H240.9300
Ag2—S12.668 (2)C25—C261.357 (14)
N1—C11.142 (12)C25—H250.9300
N2—C21.153 (12)C26—C271.382 (12)
N2—Ag2ii2.429 (9)C26—H260.9300
P1—C41.817 (9)C27—H270.9300
P1—C101.819 (9)C28—H28A0.9700
P1—C31.842 (8)C28—H28B0.9700
P2—C221.815 (9)C29—C341.361 (13)
P2—C31.821 (9)C29—C301.384 (12)
P2—C161.825 (9)C30—C311.385 (13)
P3—C351.797 (9)C30—H300.9300
P3—C291.819 (9)C31—C321.355 (14)
P3—C281.838 (9)C31—H310.9300
P4—C471.783 (10)C32—C331.356 (14)
P4—C411.806 (9)C32—H320.9300
P4—C281.855 (9)C33—C341.402 (13)
S1—C11.659 (11)C33—H330.9300
S2—C21.633 (11)C34—H340.9300
C3—H3A0.9700C35—C361.379 (13)
C3—H3B0.9700C35—C401.386 (12)
C4—C51.364 (13)C36—C371.393 (14)
C4—C91.380 (12)C36—H360.9300
C5—C61.387 (13)C37—C381.375 (15)
C5—H50.9300C37—H370.9300
C6—C71.378 (14)C38—C391.370 (14)
C6—H60.9300C38—H380.9300
C7—C81.342 (13)C39—C401.384 (13)
C7—H70.9300C39—H390.9300
C8—C91.378 (13)C40—H400.9300
C8—H80.9300C41—C421.375 (13)
C9—H90.9300C41—C461.385 (14)
C10—C151.378 (12)C42—C431.383 (13)
C10—C111.386 (12)C42—H420.9300
C11—C121.382 (13)C43—C441.367 (14)
C11—H110.9300C43—H430.9300
C12—C131.369 (13)C44—C451.373 (15)
C12—H120.9300C44—H440.9300
C13—C141.355 (13)C45—C461.379 (15)
C13—H130.9300C45—H450.9300
C14—C151.388 (13)C46—H460.9300
C14—H140.9300C47—C481.363 (15)
C15—H150.9300C47—C521.374 (14)
C16—C211.377 (13)C48—C491.396 (15)
C16—C171.383 (13)C48—H480.9300
C17—C181.394 (13)C49—C501.368 (16)
C17—H170.9300C49—H490.9300
C18—C191.351 (15)C50—C511.362 (17)
C18—H180.9300C50—H500.9300
C19—C201.348 (15)C51—C521.383 (16)
C19—H190.9300C51—H510.9300
C20—C211.380 (14)C52—H520.9300
C20—H200.9300
P1—Ag1—P3127.18 (8)C16—C21—C20120.8 (11)
P1—Ag1—S1108.67 (8)C16—C21—H21119.6
P3—Ag1—S1106.10 (8)C20—C21—H21119.6
P1—Ag1—S2107.71 (9)C23—C22—C27118.3 (8)
P3—Ag1—S2104.55 (9)C23—C22—P2119.2 (7)
S1—Ag1—S299.11 (8)C27—C22—P2122.4 (7)
N2i—Ag2—P2101.4 (2)C22—C23—C24119.9 (9)
N2i—Ag2—P4113.2 (2)C22—C23—H23120.0
P2—Ag2—P4126.43 (8)C24—C23—H23120.0
N2i—Ag2—S1101.5 (3)C25—C24—C23120.7 (10)
P2—Ag2—S1106.66 (8)C25—C24—H24119.7
P4—Ag2—S1104.95 (8)C23—C24—H24119.7
C2—N2—Ag2ii163.2 (10)C24—C25—C26120.1 (10)
C4—P1—C10104.3 (4)C24—C25—H25120.0
C4—P1—C3102.5 (4)C26—C25—H25120.0
C10—P1—C3106.5 (4)C25—C26—C27120.1 (10)
C4—P1—Ag1111.9 (3)C25—C26—H26119.9
C10—P1—Ag1116.5 (3)C27—C26—H26119.9
C3—P1—Ag1113.9 (3)C26—C27—C22120.8 (9)
C22—P2—C3102.3 (4)C26—C27—H27119.6
C22—P2—C16104.1 (4)C22—C27—H27119.6
C3—P2—C16101.6 (4)P3—C28—P4114.6 (5)
C22—P2—Ag2119.0 (3)P3—C28—H28A108.6
C3—P2—Ag2116.4 (3)P4—C28—H28A108.6
C16—P2—Ag2111.3 (3)P3—C28—H28B108.6
C35—P3—C29105.0 (4)P4—C28—H28B108.6
C35—P3—C28103.6 (4)H28A—C28—H28B107.6
C29—P3—C28105.2 (4)C34—C29—C30118.4 (9)
C35—P3—Ag1117.6 (3)C34—C29—P3121.4 (7)
C29—P3—Ag1108.1 (3)C30—C29—P3118.8 (7)
C28—P3—Ag1116.1 (3)C29—C30—C31121.2 (10)
C47—P4—C41105.6 (5)C29—C30—H30119.4
C47—P4—C28100.1 (4)C31—C30—H30119.4
C41—P4—C28105.8 (4)C32—C31—C30119.7 (11)
C47—P4—Ag2114.9 (3)C32—C31—H31120.1
C41—P4—Ag2113.3 (3)C30—C31—H31120.1
C28—P4—Ag2115.7 (3)C31—C32—C33119.8 (11)
C1—S1—Ag299.6 (3)C31—C32—H32120.1
C1—S1—Ag1109.4 (4)C33—C32—H32120.1
Ag2—S1—Ag181.47 (7)C32—C33—C34120.8 (11)
C2—S2—Ag1117.9 (4)C32—C33—H33119.6
N1—C1—S1179.3 (12)C34—C33—H33119.6
N2—C2—S2165.5 (11)C29—C34—C33119.9 (10)
P2—C3—P1116.9 (4)C29—C34—H34120.1
P2—C3—H3A108.1C33—C34—H34120.1
P1—C3—H3A108.1C36—C35—C40117.3 (9)
P2—C3—H3B108.1C36—C35—P3124.0 (7)
P1—C3—H3B108.1C40—C35—P3118.7 (7)
H3A—C3—H3B107.3C35—C36—C37120.8 (10)
C5—C4—C9118.0 (9)C35—C36—H36119.6
C5—C4—P1117.0 (7)C37—C36—H36119.6
C9—C4—P1124.8 (7)C38—C37—C36120.7 (11)
C4—C5—C6120.2 (10)C38—C37—H37119.6
C4—C5—H5119.9C36—C37—H37119.6
C6—C5—H5119.9C39—C38—C37119.2 (10)
C7—C6—C5120.7 (10)C39—C38—H38120.4
C7—C6—H6119.6C37—C38—H38120.4
C5—C6—H6119.6C38—C39—C40119.8 (10)
C8—C7—C6119.2 (10)C38—C39—H39120.1
C8—C7—H7120.4C40—C39—H39120.1
C6—C7—H7120.4C39—C40—C35122.1 (10)
C7—C8—C9120.4 (10)C39—C40—H40118.9
C7—C8—H8119.8C35—C40—H40118.9
C9—C8—H8119.8C42—C41—C46113.5 (9)
C8—C9—C4121.5 (9)C42—C41—P4118.9 (7)
C8—C9—H9119.3C46—C41—P4127.0 (8)
C4—C9—H9119.3C41—C42—C43123.6 (10)
C15—C10—C11117.9 (8)C41—C42—H42118.2
C15—C10—P1123.8 (7)C43—C42—H42118.2
C11—C10—P1118.2 (7)C44—C43—C42120.0 (10)
C12—C11—C10121.0 (9)C44—C43—H43120.0
C12—C11—H11119.5C42—C43—H43120.0
C10—C11—H11119.5C43—C44—C45118.4 (10)
C13—C12—C11119.9 (10)C43—C44—H44120.8
C13—C12—H12120.0C45—C44—H44120.8
C11—C12—H12120.0C44—C45—C46119.6 (11)
C14—C13—C12119.9 (9)C44—C45—H45120.2
C14—C13—H13120.0C46—C45—H45120.2
C12—C13—H13120.0C45—C46—C41123.6 (11)
C13—C14—C15120.6 (10)C45—C46—H46118.2
C13—C14—H14119.7C41—C46—H46118.2
C15—C14—H14119.7C48—C47—C52112.3 (10)
C10—C15—C14120.6 (9)C48—C47—P4120.4 (8)
C10—C15—H15119.7C52—C47—P4127.3 (9)
C14—C15—H15119.7C47—C48—C49124.3 (12)
C21—C16—C17119.0 (9)C47—C48—H48117.9
C21—C16—P2125.6 (8)C49—C48—H48117.9
C17—C16—P2115.4 (7)C50—C49—C48120.8 (13)
C16—C17—C18119.4 (10)C50—C49—H49119.6
C16—C17—H17120.3C48—C49—H49119.6
C18—C17—H17120.3C51—C50—C49117.1 (12)
C19—C18—C17119.7 (11)C51—C50—H50121.5
C19—C18—H18120.2C49—C50—H50121.5
C17—C18—H18120.2C50—C51—C52119.8 (13)
C20—C19—C18121.9 (11)C50—C51—H51120.1
C20—C19—H19119.0C52—C51—H51120.1
C18—C19—H19119.0C47—C52—C51125.8 (13)
C19—C20—C21119.2 (11)C47—C52—H52117.1
C19—C20—H20120.4C51—C52—H52117.1
C21—C20—H20120.4
P3—Ag1—P1—C457.1 (3)C3—P2—C16—C210.2 (9)
S1—Ag1—P1—C4174.4 (3)Ag2—P2—C16—C21124.8 (8)
S2—Ag1—P1—C467.9 (3)C22—P2—C16—C1776.7 (8)
P3—Ag1—P1—C10176.9 (3)C3—P2—C16—C17177.2 (7)
S1—Ag1—P1—C1054.5 (3)Ag2—P2—C16—C1752.7 (8)
S2—Ag1—P1—C1052.0 (3)C21—C16—C17—C181.7 (15)
P3—Ag1—P1—C358.6 (3)P2—C16—C17—C18175.9 (8)
S1—Ag1—P1—C370.0 (3)C16—C17—C18—C191.1 (16)
S2—Ag1—P1—C3176.5 (3)C17—C18—C19—C201.1 (18)
N2i—Ag2—P2—C2251.2 (4)C18—C19—C20—C211.7 (18)
P4—Ag2—P2—C22178.4 (3)C17—C16—C21—C202.3 (15)
S1—Ag2—P2—C2254.6 (3)P2—C16—C21—C20175.0 (8)
N2i—Ag2—P2—C3174.4 (4)C19—C20—C21—C162.3 (16)
P4—Ag2—P2—C355.1 (3)C3—P2—C22—C23105.2 (8)
S1—Ag2—P2—C368.6 (3)C16—P2—C22—C23149.2 (8)
N2i—Ag2—P2—C1669.8 (4)Ag2—P2—C22—C2324.7 (9)
P4—Ag2—P2—C1660.7 (4)C3—P2—C22—C2771.4 (8)
S1—Ag2—P2—C16175.6 (3)C16—P2—C22—C2734.1 (9)
P1—Ag1—P3—C3513.1 (4)Ag2—P2—C22—C27158.7 (7)
S1—Ag1—P3—C35142.7 (4)C27—C22—C23—C242.6 (14)
S2—Ag1—P3—C35113.1 (4)P2—C22—C23—C24174.2 (8)
P1—Ag1—P3—C29131.7 (3)C22—C23—C24—C250.5 (16)
S1—Ag1—P3—C2998.8 (3)C23—C24—C25—C262.0 (17)
S2—Ag1—P3—C295.4 (3)C24—C25—C26—C272.2 (16)
P1—Ag1—P3—C28110.5 (3)C25—C26—C27—C220.0 (15)
S1—Ag1—P3—C2819.1 (3)C23—C22—C27—C262.4 (14)
S2—Ag1—P3—C28123.3 (3)P2—C22—C27—C26174.3 (7)
N2i—Ag2—P4—C4714.5 (5)C35—P3—C28—P477.0 (6)
P2—Ag2—P4—C47140.2 (4)C29—P3—C28—P4173.0 (5)
S1—Ag2—P4—C4795.3 (4)Ag1—P3—C28—P453.5 (5)
N2i—Ag2—P4—C41107.1 (5)C47—P4—C28—P3176.6 (5)
P2—Ag2—P4—C4118.7 (4)C41—P4—C28—P373.9 (6)
S1—Ag2—P4—C41143.2 (4)Ag2—P4—C28—P352.5 (6)
N2i—Ag2—P4—C28130.4 (4)C35—P3—C29—C3424.1 (9)
P2—Ag2—P4—C28103.8 (3)C28—P3—C29—C34133.1 (8)
S1—Ag2—P4—C2820.7 (3)Ag1—P3—C29—C34102.2 (8)
N2i—Ag2—S1—C179.4 (5)C35—P3—C29—C30169.4 (8)
P2—Ag2—S1—C1174.8 (4)C28—P3—C29—C3060.5 (9)
P4—Ag2—S1—C138.6 (4)Ag1—P3—C29—C3064.2 (8)
N2i—Ag2—S1—Ag1172.2 (2)C34—C29—C30—C311.6 (15)
P2—Ag2—S1—Ag166.44 (8)P3—C29—C30—C31165.3 (8)
P4—Ag2—S1—Ag169.74 (8)C29—C30—C31—C322.6 (17)
P1—Ag1—S1—C1166.8 (4)C30—C31—C32—C331.6 (18)
P3—Ag1—S1—C127.2 (4)C31—C32—C33—C340.5 (18)
S2—Ag1—S1—C180.9 (4)C30—C29—C34—C330.5 (15)
P1—Ag1—S1—Ag269.48 (8)P3—C29—C34—C33167.0 (8)
P3—Ag1—S1—Ag270.11 (8)C32—C33—C34—C291.5 (17)
S2—Ag1—S1—Ag2178.23 (8)C29—P3—C35—C3653.5 (10)
P1—Ag1—S2—C262.2 (4)C28—P3—C35—C3656.6 (10)
P3—Ag1—S2—C275.4 (4)Ag1—P3—C35—C36173.7 (8)
S1—Ag1—S2—C2175.2 (4)C29—P3—C35—C40126.1 (8)
Ag2—S1—C1—N1119 (96)C28—P3—C35—C40123.9 (8)
Ag1—S1—C1—N135 (96)Ag1—P3—C35—C405.8 (9)
Ag2ii—N2—C2—S2149 (2)C40—C35—C36—C373.5 (17)
Ag1—S2—C2—N2169 (4)P3—C35—C36—C37176.9 (9)
C22—P2—C3—P178.9 (5)C35—C36—C37—C380 (2)
C16—P2—C3—P1173.7 (5)C36—C37—C38—C393 (2)
Ag2—P2—C3—P152.6 (5)C37—C38—C39—C402.9 (18)
C4—P1—C3—P2173.2 (5)C38—C39—C40—C350.3 (17)
C10—P1—C3—P277.6 (6)C36—C35—C40—C393.5 (16)
Ag1—P1—C3—P252.2 (5)P3—C35—C40—C39176.9 (8)
C10—P1—C4—C569.3 (8)C47—P4—C41—C42132.2 (9)
C3—P1—C4—C5179.9 (8)C28—P4—C41—C42122.3 (8)
Ag1—P1—C4—C557.5 (8)Ag2—P4—C41—C425.5 (10)
C10—P1—C4—C9116.6 (8)C47—P4—C41—C4657.0 (11)
C3—P1—C4—C95.7 (9)C28—P4—C41—C4648.6 (11)
Ag1—P1—C4—C9116.6 (8)Ag2—P4—C41—C46176.4 (9)
C9—C4—C5—C60.2 (15)C46—C41—C42—C439.5 (16)
P1—C4—C5—C6174.8 (8)P4—C41—C42—C43178.4 (9)
C4—C5—C6—C71.1 (17)C41—C42—C43—C440.7 (18)
C5—C6—C7—C80.1 (18)C42—C43—C44—C455.3 (19)
C6—C7—C8—C91.7 (17)C43—C44—C45—C462 (2)
C7—C8—C9—C42.5 (16)C44—C45—C46—C418 (2)
C5—C4—C9—C81.5 (14)C42—C41—C46—C4513.3 (18)
P1—C4—C9—C8172.6 (8)P4—C41—C46—C45175.4 (10)
C4—P1—C10—C1567.9 (9)C41—P4—C47—C48140.9 (10)
C3—P1—C10—C1540.0 (9)C28—P4—C47—C48109.4 (11)
Ag1—P1—C10—C15168.2 (7)Ag2—P4—C47—C4815.2 (12)
C4—P1—C10—C11111.3 (8)C41—P4—C47—C5240.1 (13)
C3—P1—C10—C11140.8 (7)C28—P4—C47—C5269.6 (12)
Ag1—P1—C10—C1112.6 (9)Ag2—P4—C47—C52165.7 (10)
C15—C10—C11—C121.9 (15)C52—C47—C48—C490 (2)
P1—C10—C11—C12178.8 (8)P4—C47—C48—C49179.0 (11)
C10—C11—C12—C130.1 (16)C47—C48—C49—C500 (2)
C11—C12—C13—C141.7 (17)C48—C49—C50—C511 (2)
C12—C13—C14—C151.1 (17)C49—C50—C51—C521 (2)
C11—C10—C15—C142.5 (14)C48—C47—C52—C510 (2)
P1—C10—C15—C14178.3 (8)P4—C47—C52—C51178.9 (12)
C13—C14—C15—C101.0 (16)C50—C51—C52—C470 (3)
C22—P2—C16—C21105.8 (9)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(NCS)(C25H22P2)]
Mr550.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.0712 (14), 23.080 (2), 15.6340 (16)
β (°) 93.470 (1)
V3)4708.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.43 × 0.34 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.650, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
23675, 8306, 4539
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.168, 1.02
No. of reflections8306
No. of parameters559
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0414P)2 + 37.553P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 1.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—P12.450 (2)Ag2—N2i2.429 (9)
Ag1—P32.451 (2)Ag2—P22.497 (2)
Ag1—S12.670 (3)Ag2—P42.498 (2)
Ag1—S22.768 (3)Ag2—S12.668 (2)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Keystone Basic Research Program (973 Program) under grant No. 2007CB310408, No. 2006CB302901 and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2007). Inorg. Chem. 46, 3185–3191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748–762.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 78–81.  Google Scholar
First citationJin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C. S., Chen, P. Q., Chang, Z., Wang, J. J., Yan, L. F., Sun, H. W., Bu, X. H., Lin, Z. M. & Batten, S. R. (2008). Inorg. Chem. Commun. 11, 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1237-m1238
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds