metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1209-m1210

Poly[(μ2-2,2′-bi­pyridine-κ2N:N′)bis­­(μ3-2,2,2-tri­fluoro­acetato-κ3O:O:O′)disilver(I)]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 August 2010; accepted 1 September 2010; online 4 September 2010)

In the title salt, [Ag2(CF3CO2)2(C10H8N2)]n, which may also be regarded as a coordination polymer if long Ag⋯O inter­actions are considered, each of the N atoms of the somewhat twisted 2,2′-bipyridine mol­ecule [N—C—C—N = −27.5 (4)°] binds to an Ag atom, and each of the carboxyl­ate ligands is tridentate, linking to three Ag atoms. The bidentate carboxyl­ate O atoms bridge the same two Ag atoms, resulting in the formation of Ag2O2 rings. These rings are bridged by the 2,2′-bipyridine ligands, forming a chain along the b axis. The chains are linked into double chains via the remaining Ag—O bonds and Ag⋯Ag contacts. As a consequence of the Ag⋯Ag contacts, the NO4 donor set about each Ag atom is heavily distorted. Finally, the chains are linked into a three-dimensional network by a combination of C—H⋯O and C—H⋯F inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For a related Ag salt, see: Arman et al. (2010[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167-m1168.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C2F3O2)2(C10H8N2)]

  • Mr = 597.96

  • Monoclinic, C 2/c

  • a = 24.597 (6) Å

  • b = 6.8474 (14) Å

  • c = 21.253 (5) Å

  • β = 116.029 (4)°

  • V = 3216.5 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 98 K

  • 0.31 × 0.29 × 0.20 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.619, Tmax = 1.000

  • 10231 measured reflections

  • 3662 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.09

  • 3661 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1 2.284 (2)
Ag1—N1 2.309 (3)
Ag1—O2i 2.323 (3)
Ag1—O3ii 2.844 (2)
Ag1—O2 2.993 (3)
Ag1⋯Ag1i 3.0675 (9)
Ag1⋯Ag2 3.1941 (7)
Ag2—O3 2.276 (2)
Ag2—O4iii 2.280 (3)
Ag2—N2 2.326 (3)
Ag2—O1iv 2.837 (2)
Ag2—O4 3.069 (3)
Ag2⋯Ag2iii 2.9687 (8)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1v 0.95 2.50 3.410 (4) 159
C8—H8⋯O3vi 0.95 2.58 3.287 (4) 132
C1—H1⋯F6ii 0.95 2.54 3.072 (4) 116
C2—H2⋯F4vii 0.95 2.55 3.145 (4) 121
C10—H10⋯F3iv 0.95 2.52 3.076 (4) 117
Symmetry codes: (ii) x, y-1, z; (iv) x, y+1, z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Supramolecular structures of silver salts are highly dependent upon the nature of counter anions and the presence of solvent (Kundu et al., 2010). During the course of on-going crystal engineering studies on silver salts (Arman et al., 2010), the title salt was isolated and characterized.

The asymmetric unit of (I) comprises two Ag cations, a 2,2'-bipyridine molecule and two trifluoroacetate anions, Fig. 1. Each of the 2,2'-bipyridine-N atoms coordinates to a Ag atom bringing into close proximity the Ag1 and Ag2 atoms [Ag1···Ag2 = 3.1941 (7) Å]. In order to relive steric pressure, the 2,2'-bipyridine molecule is twisted as seen in the torsion angle [N1–C5–C6–N2 = -27.5 (4) °] and the dihedral angle formed between the pyridine rings of 26.93 (15) °. Each Ag atom forms a close Ag–O bond to a carboxylate-O, i.e. Ag1–O1 and Ag2–O3, Table 1, and each of the O1 and O3 atoms also bridges a neighbouring Ag atom to form a non-planar Ag2O2 ring. The second carboxylate-O atom in each case, i.e. O2 and O4, bridges to a different Ag atom so that each carboxylate ligand is tridentate. The supramolecular assembly is a double chain along the b axis whereby one row of Ag2O2 rings bridged by 2,2'-bipyridine molecules is connected to a second row via the Ag1–O2 and Ag2–O4 bonds and vice versa. Additional stability to the double chain is afforded by Ag1···Ag1 and Ag2···Ag2 interactions, Fig. 2 and Table 1. In terms of coordination geometry, each Ag atom exists within a NO3 donor set which is grossly distorted owing to the presence of two close Ag···Ag contacts. Chains are consolidated in the crystal packing by a combination of C–H···O and C–H···F contacts, Table 2.

Related literature top

For structural diversity in the supramolecular structures of silver salts, see: Kundu et al. (2010). For a related Ag salt, see: Arman et al. (2010).

Experimental top

2,2'-Bipyridine (0.015 g, 0.1 mmol) was dissolved in 5 ml of methanol. Added to this was silver trifluoroacetate (0.044 g, 0.2 mmol) dissolved in 7 ml of methanol. The resulting solution was gently heated and allowed to stand for slow evaporation affording colourless blocks of (I) after five days.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). In the final refinement a low angle reflection evidently effected by the beam stop were omitted, i.e. (200).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Portion of the supramolecular double chain aligned along the b axis in (I).
Poly[(µ2-2,2'-bipyridine-κ2N:N')bis(µ3-2,2,2- trifluoroacetato-κ3O:O:O')disilver(I)] top
Crystal data top
[Ag2(C2F3O2)2(C10H8N2)]F(000) = 2288
Mr = 597.96Dx = 2.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 8570 reflections
a = 24.597 (6) Åθ = 1.8–40.5°
b = 6.8474 (14) ŵ = 2.53 mm1
c = 21.253 (5) ÅT = 98 K
β = 116.029 (4)°Block, colourless
V = 3216.5 (13) Å30.31 × 0.29 × 0.20 mm
Z = 8
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3662 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2531
Tmin = 0.619, Tmax = 1.000k = 88
10231 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0473P)2 + 8.2186P]
where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ag2(C2F3O2)2(C10H8N2)]V = 3216.5 (13) Å3
Mr = 597.96Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.597 (6) ŵ = 2.53 mm1
b = 6.8474 (14) ÅT = 98 K
c = 21.253 (5) Å0.31 × 0.29 × 0.20 mm
β = 116.029 (4)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3662 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3469 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 1.000Rint = 0.037
10231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.66 e Å3
3661 reflectionsΔρmin = 0.65 e Å3
253 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.270544 (11)0.27690 (4)0.078818 (12)0.01708 (10)
Ag20.239869 (12)0.73275 (4)0.063674 (12)0.01661 (10)
F10.05870 (11)0.2464 (3)0.01451 (13)0.0250 (5)
F20.04349 (10)0.0721 (4)0.07648 (10)0.0313 (5)
F30.07622 (10)0.0612 (3)0.02507 (11)0.0243 (4)
F40.45993 (11)0.7568 (3)0.16884 (13)0.0287 (5)
F50.45617 (9)0.9732 (3)0.09408 (11)0.0298 (5)
F60.43891 (9)1.0540 (3)0.18104 (11)0.0296 (5)
O10.18662 (10)0.1008 (3)0.06300 (11)0.0186 (5)
O20.15108 (12)0.2233 (3)0.04584 (13)0.0207 (5)
O30.32741 (11)0.9056 (3)0.11732 (12)0.0189 (5)
O40.35046 (13)0.7790 (4)0.03384 (13)0.0234 (5)
N10.32454 (12)0.4507 (4)0.18047 (13)0.0148 (5)
N20.20388 (13)0.5665 (4)0.13321 (13)0.0161 (5)
C10.38483 (15)0.4390 (5)0.20200 (16)0.0179 (6)
H10.39910.40090.16890.021*
C20.42676 (14)0.4794 (5)0.26943 (17)0.0187 (6)
H20.46880.46680.28260.022*
C30.40639 (15)0.5387 (5)0.31752 (16)0.0185 (6)
H30.43430.56820.36430.022*
C40.34421 (15)0.5545 (4)0.29617 (15)0.0166 (6)
H40.32910.59510.32830.020*
C50.30455 (14)0.5100 (4)0.22711 (16)0.0156 (6)
C60.23773 (14)0.5279 (4)0.20229 (16)0.0147 (6)
C70.21148 (15)0.5069 (4)0.24806 (15)0.0160 (6)
H70.23610.48260.29640.019*
C80.14863 (16)0.5217 (5)0.22253 (18)0.0205 (6)
H80.13000.50920.25310.025*
C90.11430 (15)0.5549 (5)0.15166 (18)0.0193 (6)
H90.07150.56250.13250.023*
C100.14338 (15)0.5769 (4)0.10896 (17)0.0182 (6)
H100.11950.60040.06040.022*
C110.14613 (14)0.1417 (4)0.00329 (15)0.0156 (6)
C120.08041 (15)0.0970 (5)0.00906 (16)0.0174 (6)
C130.36199 (14)0.8644 (4)0.09028 (15)0.0149 (6)
C140.42956 (15)0.9154 (5)0.13331 (16)0.0174 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01380 (15)0.02195 (15)0.01404 (15)0.00357 (9)0.00477 (11)0.00392 (8)
Ag20.01414 (15)0.02253 (15)0.01274 (15)0.00263 (8)0.00552 (11)0.00048 (8)
F10.0216 (12)0.0243 (10)0.0344 (12)0.0023 (8)0.0171 (10)0.0020 (8)
F20.0195 (10)0.0516 (14)0.0162 (10)0.0099 (10)0.0017 (8)0.0047 (9)
F30.0235 (10)0.0207 (9)0.0324 (11)0.0027 (8)0.0158 (9)0.0038 (8)
F40.0181 (11)0.0223 (10)0.0330 (13)0.0050 (8)0.0005 (10)0.0093 (8)
F50.0195 (10)0.0442 (13)0.0257 (11)0.0064 (10)0.0100 (9)0.0057 (9)
F60.0182 (10)0.0323 (11)0.0288 (11)0.0015 (8)0.0017 (9)0.0153 (9)
O10.0154 (11)0.0236 (11)0.0126 (10)0.0014 (9)0.0024 (9)0.0004 (8)
O20.0187 (13)0.0276 (12)0.0190 (12)0.0018 (9)0.0112 (11)0.0058 (9)
O30.0144 (11)0.0240 (11)0.0180 (10)0.0016 (9)0.0068 (9)0.0030 (9)
O40.0192 (13)0.0307 (13)0.0158 (12)0.0028 (10)0.0035 (11)0.0065 (9)
N10.0164 (12)0.0141 (11)0.0121 (11)0.0021 (10)0.0045 (10)0.0019 (9)
N20.0171 (13)0.0170 (12)0.0133 (12)0.0010 (10)0.0058 (10)0.0029 (9)
C10.0185 (15)0.0191 (14)0.0156 (14)0.0022 (12)0.0070 (13)0.0038 (11)
C20.0140 (14)0.0221 (15)0.0185 (15)0.0027 (13)0.0058 (12)0.0019 (12)
C30.0196 (16)0.0204 (14)0.0112 (13)0.0010 (12)0.0027 (12)0.0015 (11)
C40.0206 (16)0.0149 (13)0.0117 (13)0.0010 (11)0.0048 (12)0.0013 (11)
C50.0196 (15)0.0117 (13)0.0163 (14)0.0001 (12)0.0086 (12)0.0012 (10)
C60.0174 (14)0.0102 (12)0.0173 (14)0.0011 (11)0.0083 (12)0.0011 (10)
C70.0243 (16)0.0141 (13)0.0110 (13)0.0007 (13)0.0091 (12)0.0022 (10)
C80.0291 (18)0.0154 (14)0.0245 (16)0.0005 (13)0.0185 (15)0.0012 (12)
C90.0162 (15)0.0160 (13)0.0268 (16)0.0010 (12)0.0105 (13)0.0021 (12)
C100.0175 (15)0.0162 (14)0.0185 (14)0.0010 (12)0.0057 (13)0.0018 (11)
C110.0137 (14)0.0162 (13)0.0138 (13)0.0009 (12)0.0031 (11)0.0016 (11)
C120.0154 (15)0.0203 (15)0.0155 (14)0.0012 (12)0.0059 (12)0.0027 (11)
C130.0119 (14)0.0150 (13)0.0142 (13)0.0000 (11)0.0024 (11)0.0008 (11)
C140.0152 (15)0.0184 (14)0.0171 (14)0.0006 (12)0.0057 (12)0.0008 (11)
Geometric parameters (Å, º) top
Ag1—O12.284 (2)O4—Ag2iii2.280 (3)
Ag1—N12.309 (3)N1—C51.348 (4)
Ag1—O2i2.323 (3)N1—C11.349 (4)
Ag1—O3ii2.844 (2)N2—C101.346 (4)
Ag1—O22.993 (3)N2—C61.359 (4)
Ag1—Ag1i3.0675 (9)C1—C21.377 (4)
Ag1—Ag23.1941 (7)C1—H10.9500
Ag2—O32.276 (2)C2—C31.382 (4)
Ag2—O4iii2.280 (3)C2—H20.9500
Ag2—N22.326 (3)C3—C41.396 (5)
Ag2—O1iv2.837 (2)C3—H30.9500
Ag2—O43.069 (3)C4—C51.394 (4)
Ag2—Ag2iii2.9687 (8)C4—H40.9500
F1—C121.348 (4)C5—C61.495 (4)
F2—C121.328 (4)C6—C71.391 (4)
F3—C121.333 (4)C7—C81.400 (5)
F4—C141.346 (4)C7—H70.9500
F5—C141.326 (4)C8—C91.385 (5)
F6—C141.333 (4)C8—H80.9500
O1—C111.254 (4)C9—C101.388 (4)
O2—C111.237 (4)C9—H90.9500
O2—Ag1i2.322 (3)C10—H100.9500
O3—C131.250 (4)C11—C121.550 (4)
O4—C131.250 (4)C13—C141.545 (4)
O1—Ag1—N1121.42 (9)C5—C4—C3119.1 (3)
O1—Ag1—O2i140.48 (9)C5—C4—H4120.5
N1—Ag1—O2i94.01 (9)C3—C4—H4120.5
O1—Ag1—Ag1i86.13 (5)N1—C5—C4121.9 (3)
N1—Ag1—Ag1i149.60 (7)N1—C5—C6117.7 (3)
O2i—Ag1—Ag1i65.77 (7)C4—C5—C6120.4 (3)
O1—Ag1—Ag2110.04 (6)N2—C6—C7121.6 (3)
N1—Ag1—Ag266.67 (7)N2—C6—C5117.0 (3)
O2i—Ag1—Ag299.26 (6)C7—C6—C5121.4 (3)
Ag1i—Ag1—Ag293.284 (12)C6—C7—C8119.6 (3)
O3—Ag2—O4iii143.51 (9)C6—C7—H7120.2
O3—Ag2—N2118.43 (9)C8—C7—H7120.2
O4iii—Ag2—N293.99 (10)C9—C8—C7118.4 (3)
O3—Ag2—Ag2iii85.12 (6)C9—C8—H8120.8
O4iii—Ag2—Ag2iii70.16 (7)C7—C8—H8120.8
N2—Ag2—Ag2iii151.77 (7)C8—C9—C10119.1 (3)
O3—Ag2—Ag1109.14 (6)C8—C9—H9120.5
O4iii—Ag2—Ag198.63 (6)C10—C9—H9120.5
N2—Ag2—Ag166.22 (7)N2—C10—C9123.0 (3)
Ag2iii—Ag2—Ag192.459 (12)N2—C10—H10118.5
C11—O1—Ag1107.24 (19)C9—C10—H10118.5
C11—O2—Ag1i131.1 (2)O2—C11—O1128.8 (3)
C13—O3—Ag2109.72 (19)O2—C11—C12115.3 (3)
C13—O4—Ag2iii127.5 (2)O1—C11—C12115.7 (3)
C5—N1—C1118.0 (3)F2—C12—F3107.7 (3)
C5—N1—Ag1126.7 (2)F2—C12—F1107.7 (3)
C1—N1—Ag1112.5 (2)F3—C12—F1106.1 (2)
C10—N2—C6118.3 (3)F2—C12—C11112.1 (2)
C10—N2—Ag2113.3 (2)F3—C12—C11113.1 (3)
C6—N2—Ag2123.9 (2)F1—C12—C11109.9 (3)
N1—C1—C2123.4 (3)O4—C13—O3129.3 (3)
N1—C1—H1118.3O4—C13—C14114.0 (3)
C2—C1—H1118.3O3—C13—C14116.7 (3)
C1—C2—C3118.7 (3)F5—C14—F6107.3 (3)
C1—C2—H2120.7F5—C14—F4106.7 (3)
C3—C2—H2120.7F6—C14—F4106.2 (3)
C2—C3—C4118.9 (3)F5—C14—C13113.3 (3)
C2—C3—H3120.5F6—C14—C13113.1 (3)
C4—C3—H3120.5F4—C14—C13109.7 (3)
O1—Ag1—Ag2—O3159.39 (8)C1—C2—C3—C40.3 (5)
N1—Ag1—Ag2—O342.84 (9)C2—C3—C4—C50.1 (5)
O2i—Ag1—Ag2—O347.55 (9)C1—N1—C5—C41.4 (4)
Ag1i—Ag1—Ag2—O3113.53 (6)Ag1—N1—C5—C4158.2 (2)
O1—Ag1—Ag2—O4iii44.62 (9)C1—N1—C5—C6178.3 (3)
N1—Ag1—Ag2—O4iii161.18 (10)Ag1—N1—C5—C622.1 (4)
O2i—Ag1—Ag2—O4iii108.43 (9)C3—C4—C5—N10.5 (5)
Ag1i—Ag1—Ag2—O4iii42.45 (7)C3—C4—C5—C6179.2 (3)
O1—Ag1—Ag2—N245.95 (9)C10—N2—C6—C72.5 (4)
N1—Ag1—Ag2—N270.61 (11)Ag2—N2—C6—C7152.2 (2)
O2i—Ag1—Ag2—N2161.00 (10)C10—N2—C6—C5177.8 (3)
Ag1i—Ag1—Ag2—N2133.03 (8)Ag2—N2—C6—C527.5 (4)
O1—Ag1—Ag2—Ag2iii114.92 (6)N1—C5—C6—N227.5 (4)
N1—Ag1—Ag2—Ag2iii128.52 (7)C4—C5—C6—N2152.2 (3)
O2i—Ag1—Ag2—Ag2iii38.13 (7)N1—C5—C6—C7152.8 (3)
Ag1i—Ag1—Ag2—Ag2iii27.845 (17)C4—C5—C6—C727.5 (4)
N1—Ag1—O1—C11132.75 (19)N2—C6—C7—C81.3 (4)
O2i—Ag1—O1—C1176.9 (2)C5—C6—C7—C8179.0 (3)
Ag1i—Ag1—O1—C1133.61 (19)C6—C7—C8—C90.7 (5)
Ag2—Ag1—O1—C1158.5 (2)C7—C8—C9—C101.5 (5)
O4iii—Ag2—O3—C1378.8 (2)C6—N2—C10—C91.7 (5)
N2—Ag2—O3—C13131.3 (2)Ag2—N2—C10—C9155.6 (3)
Ag2iii—Ag2—O3—C1332.30 (19)C8—C9—C10—N20.3 (5)
Ag1—Ag2—O3—C1358.6 (2)Ag1i—O2—C11—O131.3 (5)
O1—Ag1—N1—C520.2 (3)Ag1i—O2—C11—C12153.5 (2)
O2i—Ag1—N1—C5178.2 (2)Ag1—O1—C11—O215.3 (4)
Ag1i—Ag1—N1—C5132.1 (2)Ag1—O1—C11—C12159.9 (2)
Ag2—Ag1—N1—C579.9 (2)O2—C11—C12—F227.9 (4)
O1—Ag1—N1—C1140.4 (2)O1—C11—C12—F2156.2 (3)
O2i—Ag1—N1—C121.3 (2)O2—C11—C12—F3149.9 (3)
Ag1i—Ag1—N1—C167.4 (3)O1—C11—C12—F334.2 (4)
Ag2—Ag1—N1—C1119.6 (2)O2—C11—C12—F191.8 (3)
O3—Ag2—N2—C10140.1 (2)O1—C11—C12—F184.1 (3)
O4iii—Ag2—N2—C1022.5 (2)Ag2iii—O4—C13—O326.8 (5)
Ag2iii—Ag2—N2—C1076.4 (3)Ag2iii—O4—C13—C14156.6 (2)
Ag1—Ag2—N2—C10120.2 (2)Ag2—O3—C13—O415.0 (4)
O3—Ag2—N2—C615.7 (3)Ag2—O3—C13—C14161.6 (2)
O4iii—Ag2—N2—C6178.3 (2)O4—C13—C14—F538.5 (4)
Ag2iii—Ag2—N2—C6127.8 (2)O3—C13—C14—F5144.4 (3)
Ag1—Ag2—N2—C684.0 (2)O4—C13—C14—F6160.9 (3)
C5—N1—C1—C21.8 (5)O3—C13—C14—F622.0 (4)
Ag1—N1—C1—C2160.6 (3)O4—C13—C14—F480.7 (3)
N1—C1—C2—C31.3 (5)O3—C13—C14—F496.5 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z; (iii) x+1/2, y+3/2, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1v0.952.503.410 (4)159
C8—H8···O3vi0.952.583.287 (4)132
C1—H1···F6ii0.952.543.072 (4)116
C2—H2···F4vii0.952.553.145 (4)121
C10—H10···F3iv0.952.523.076 (4)117
Symmetry codes: (ii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(C2F3O2)2(C10H8N2)]
Mr597.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)98
a, b, c (Å)24.597 (6), 6.8474 (14), 21.253 (5)
β (°) 116.029 (4)
V3)3216.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.31 × 0.29 × 0.20
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.619, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10231, 3662, 3469
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.09
No. of reflections3661
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.65

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—O12.284 (2)Ag2—O32.276 (2)
Ag1—N12.309 (3)Ag2—O4iii2.280 (3)
Ag1—O2i2.323 (3)Ag2—N22.326 (3)
Ag1—O3ii2.844 (2)Ag2—O1iv2.837 (2)
Ag1—O22.993 (3)Ag2—O43.069 (3)
Ag1—Ag1i3.0675 (9)Ag2—Ag2iii2.9687 (8)
Ag1—Ag23.1941 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z; (iii) x+1/2, y+3/2, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1v0.952.503.410 (4)159
C8—H8···O3vi0.952.583.287 (4)132
C1—H1···F6ii0.952.543.072 (4)116
C2—H2···F4vii0.952.553.145 (4)121
C10—H10···F3iv0.952.523.076 (4)117
Symmetry codes: (ii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1, y, z+1/2.
 

References

First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1209-m1210
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds