organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-3-Carbamoyl-2-(4-meth­­oxy­benzene­sulfonamido)­propanoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 26 August 2010; accepted 7 September 2010; online 18 September 2010)

In the title compound, C11H14N2O6S, an amino acid-derived sulfonamide, the acetamido group and the carb­oxy­lic group are oriented at dihedral angles of 45.84 (5)° and 47.97 (5)° respectively, with respect to the aromatic ring. In the crystal, the mol­ecules are connected by N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Arshad et al. (2009a[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009a). Acta Cryst. E65, o940.],b[Arshad, M. N., Khan, I. U., Akkurt, M. & Shafiq, M. (2009b). Acta Cryst. E65, o1953-o1954.]), Khan et al. (2009[Khan, I. U., Sharif, S., Arshad, M. N., Ejaz, & Idrees, M. (2009). Acta Cryst. E65, o2436.]). Amino acid-derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase, see: Dankwardt et al. (2002[Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Wart, H. E. V. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233-1235.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O6S

  • Mr = 302.30

  • Monoclinic, P 21

  • a = 7.1462 (1) Å

  • b = 8.9874 (2) Å

  • c = 11.1418 (2) Å

  • β = 108.090 (1)°

  • V = 680.22 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.42 × 0.26 × 0.23 mm

Data collection
  • Siemens SMART diffractometer equipped with a Bruker APEXII detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.942

  • 15356 measured reflections

  • 3434 independent reflections

  • 3335 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.04

  • 3434 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1581 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.812 (19) 2.147 (19) 2.9430 (15) 166.9 (16)
N2—H2N2⋯O2ii 0.89 (2) 2.02 (2) 2.8808 (16) 162.9 (17)
C11—H11B⋯O3iii 0.98 2.48 3.3701 (17) 150
N1—H1N⋯O5ii 0.927 (18) 1.907 (18) 2.8196 (14) 167.8 (16)
O4—H4O⋯O5iv 0.81 (2) 1.79 (2) 2.5875 (14) 169 (2)
C9—H9A⋯O2ii 0.99 2.54 3.4055 (16) 145
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z]; (ii) [-x-1, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Amino acid derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase (Dankwardt et al., 2002). This structure is in countinuation to already reported crystal structures of sulfonamides derived from amino acids (Arshad et al., 2009a), (Arshad et al., 2009b) (Khan et al., 2009) by our group.

The dihedral angle between the acetamido group attached at the C7 and the carboxylic group C7/C8/O3/O4 is 38.64 (0.05)° while these two groups are oriented at dihedral angle of 45.84 (0.05)° and 47.97 (0.05)° respectively with respect to the aromatic ring. The symmetry related intermolecular N—H···O, O—H···O and weak C—H···O type interactions stabilized the structure by the formation of three dimentional network (Fig. 2, Table, 1).

Related literature top

For related structures, see: Arshad et al. (2009a,b), Khan et al. (2009). Amino acid-derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase, see: Dankwardt et al. (2002).

Experimental top

To the solution of L-asparagine (0.5 g, 3.78 mmol) in distilled water (10 ml), 4-methoxybenzenesulfonyl chloride(0.78 g, 3.78 mmol) was suspended. The reaction mixture was allowed to stirr at room temperature for 2 hrs. The pH of the solution was maintained at 8–9 by 1M sodium carbonate solution through out the reaction. After completion of the reaction which was observed by the consumption of suspended 4-methoxybenzenesulfonyl chloride, 1 N HCl solution was used to adjusted the pH about 2–3, which results in the formation of a white precipitate, which was filtered off, dried and recrystallized in methanol by slow evaporation to yield colorless needles of (I).

Refinement top

The C-H H-atoms were positioned geometricaly with C—H = 0.95 Å, C—H = 0.99Å and C—H = 1.00 Å for aromatic, methylene and chiral carbon atoms respectively, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). Similarly the C-H H-atoms were positioned geometricaly with C—H = 0.98 Å for methyl group and were refined using a riding model with Uiso(H) = 1.5 Ueq(C). The N-H and O–H H atoms were located in difference map with N–H= 0.81 (2)—0.93 (2)Å and O—H= 0.81 (2) with Uiso(H) = 1.2 for N atoms and Uiso(H) = 1.5 for O atoms. The three reflections (001), (002) and (003) were omitted during the final refinement as these were obscured by the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) with hydrogen bonding shown as dashed lines and the hydrogen atoms not involved in hydrogen bonding have been omitted.
(2S)-3-Carbamoyl-2-(4-methoxybenzenesulfonamido)propanoic acid top
Crystal data top
C11H14N2O6SF(000) = 316
Mr = 302.30Dx = 1.476 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8744 reflections
a = 7.1462 (1) Åθ = 3.0–28.6°
b = 8.9874 (2) ŵ = 0.27 mm1
c = 11.1418 (2) ÅT = 100 K
β = 108.090 (1)°Needle, colorless
V = 680.22 (2) Å30.42 × 0.26 × 0.23 mm
Z = 2
Data collection top
Siemens SMART
diffractometer equipped with a Bruker APEXII detector
3434 independent reflections
Radiation source: fine-focus sealed tube3335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.897, Tmax = 0.942k = 1112
15356 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1181P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3434 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1581 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C11H14N2O6SV = 680.22 (2) Å3
Mr = 302.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1462 (1) ŵ = 0.27 mm1
b = 8.9874 (2) ÅT = 100 K
c = 11.1418 (2) Å0.42 × 0.26 × 0.23 mm
β = 108.090 (1)°
Data collection top
Siemens SMART
diffractometer equipped with a Bruker APEXII detector
3434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3335 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.942Rint = 0.028
15356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.23 e Å3
3434 reflectionsAbsolute structure: Flack (1983), 1581 Friedel pairs
194 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29092 (4)0.00600 (3)0.24767 (3)0.01463 (7)
O10.42282 (14)0.05232 (12)0.31015 (9)0.0222 (2)
N10.30244 (16)0.10725 (12)0.13389 (10)0.0151 (2)
C10.04937 (16)0.00385 (17)0.35229 (10)0.0149 (2)
H1N0.375 (3)0.193 (2)0.1302 (16)0.018*
H1N20.739 (3)0.027 (2)0.1489 (16)0.018*
O20.32080 (14)0.15497 (11)0.19714 (9)0.0228 (2)
N20.65042 (16)0.03205 (13)0.13841 (11)0.0173 (2)
C20.08556 (19)0.11149 (14)0.34294 (12)0.0168 (2)
H20.04780.18470.27840.020*
H2N20.669 (2)0.130 (2)0.1430 (17)0.020*
O30.03178 (13)0.32670 (11)0.13252 (9)0.0204 (2)
C30.27541 (19)0.11253 (15)0.42761 (13)0.0181 (2)
H30.36750.18590.42120.022*
O40.12194 (15)0.17646 (12)0.03322 (11)0.0241 (2)
C40.32887 (17)0.00447 (18)0.52207 (11)0.0173 (2)
H4O0.208 (3)0.238 (2)0.0560 (19)0.026*
O50.42990 (13)0.15430 (10)0.10103 (9)0.01674 (18)
C50.1919 (2)0.10294 (16)0.53159 (12)0.0196 (3)
H50.22850.17540.59680.024*
O60.51004 (13)0.00661 (13)0.60857 (8)0.0223 (2)
C60.0043 (2)0.10393 (16)0.44689 (12)0.0189 (2)
H60.08770.17760.45290.023*
C70.17978 (17)0.09007 (14)0.05256 (11)0.0132 (2)
H70.11320.00910.06980.016*
C80.02147 (17)0.21146 (14)0.07875 (12)0.0139 (2)
C90.30540 (17)0.09626 (14)0.08778 (11)0.0138 (2)
H9A0.36280.19680.10880.017*
H9B0.22190.07520.14200.017*
C100.46823 (16)0.01830 (16)0.11135 (10)0.0134 (2)
C110.6510 (2)0.10641 (19)0.60538 (14)0.0249 (3)
H11A0.59880.20440.61670.037*
H11B0.77420.08860.67340.037*
H11C0.67620.10320.52380.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01351 (12)0.01393 (13)0.01602 (13)0.00161 (11)0.00396 (9)0.00279 (11)
O10.0180 (4)0.0296 (5)0.0215 (4)0.0010 (4)0.0097 (4)0.0059 (4)
N10.0158 (5)0.0138 (5)0.0171 (5)0.0037 (4)0.0074 (4)0.0040 (4)
C10.0147 (5)0.0149 (5)0.0141 (5)0.0006 (5)0.0030 (4)0.0027 (5)
O20.0230 (5)0.0141 (5)0.0264 (5)0.0041 (4)0.0005 (4)0.0023 (4)
N20.0125 (5)0.0143 (6)0.0252 (6)0.0011 (4)0.0061 (4)0.0012 (4)
C20.0199 (6)0.0143 (6)0.0167 (6)0.0004 (5)0.0062 (5)0.0001 (5)
O30.0141 (4)0.0163 (5)0.0297 (5)0.0005 (3)0.0053 (4)0.0082 (4)
C30.0180 (6)0.0181 (6)0.0188 (6)0.0021 (5)0.0066 (5)0.0012 (5)
O40.0170 (5)0.0220 (5)0.0373 (6)0.0072 (4)0.0144 (4)0.0125 (4)
C40.0161 (5)0.0203 (6)0.0149 (5)0.0006 (5)0.0040 (4)0.0033 (6)
O50.0131 (4)0.0122 (4)0.0244 (4)0.0006 (3)0.0051 (3)0.0009 (4)
C50.0214 (6)0.0199 (6)0.0158 (6)0.0006 (5)0.0033 (5)0.0032 (5)
O60.0168 (4)0.0290 (5)0.0180 (4)0.0028 (4)0.0009 (3)0.0013 (4)
C60.0211 (6)0.0171 (6)0.0179 (6)0.0029 (5)0.0054 (5)0.0013 (5)
C70.0118 (5)0.0121 (5)0.0159 (5)0.0001 (4)0.0047 (4)0.0003 (4)
C80.0108 (5)0.0143 (6)0.0148 (5)0.0006 (4)0.0012 (4)0.0002 (4)
C90.0121 (5)0.0131 (5)0.0157 (5)0.0017 (4)0.0037 (4)0.0002 (5)
C100.0135 (5)0.0139 (6)0.0128 (5)0.0029 (4)0.0042 (4)0.0009 (4)
C110.0170 (6)0.0362 (8)0.0200 (6)0.0060 (5)0.0034 (5)0.0027 (6)
Geometric parameters (Å, º) top
S1—O11.4336 (10)O4—H4O0.81 (2)
S1—O21.4424 (11)C4—O61.3565 (14)
S1—N11.6078 (11)C4—C51.402 (2)
S1—C11.7576 (11)O5—C101.2500 (17)
N1—C71.4514 (15)C5—C61.3790 (18)
N1—H1N0.927 (18)C5—H50.9500
C1—C21.3924 (18)O6—C111.4389 (18)
C1—C61.3948 (18)C6—H60.9500
N2—C101.3217 (16)C7—C81.5330 (17)
N2—H1N20.812 (19)C7—C91.5435 (16)
N2—H2N20.89 (2)C7—H71.0000
C2—C31.3914 (18)C9—C101.5144 (17)
C2—H20.9500C9—H9A0.9900
O3—C81.2101 (16)C9—H9B0.9900
C3—C41.3954 (19)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
O4—C81.3151 (16)C11—H11C0.9800
O1—S1—O2119.27 (6)C4—O6—C11116.86 (11)
O1—S1—N1105.72 (6)C5—C6—C1119.57 (12)
O2—S1—N1108.34 (6)C5—C6—H6120.2
O1—S1—C1109.41 (6)C1—C6—H6120.2
O2—S1—C1105.36 (6)N1—C7—C8111.01 (10)
N1—S1—C1108.38 (6)N1—C7—C9110.77 (10)
C7—N1—S1122.14 (9)C8—C7—C9109.26 (10)
C7—N1—H1N120.1 (11)N1—C7—H7108.6
S1—N1—H1N117.0 (11)C8—C7—H7108.6
C2—C1—C6120.31 (11)C9—C7—H7108.6
C2—C1—S1120.20 (10)O3—C8—O4124.77 (12)
C6—C1—S1119.46 (10)O3—C8—C7123.27 (11)
C10—N2—H1N2118.7 (12)O4—C8—C7111.95 (10)
C10—N2—H2N2118.0 (11)C10—C9—C7108.97 (10)
H1N2—N2—H2N2123.3 (16)C10—C9—H9A109.9
C3—C2—C1120.40 (12)C7—C9—H9A109.9
C3—C2—H2119.8C10—C9—H9B109.9
C1—C2—H2119.8C7—C9—H9B109.9
C2—C3—C4119.19 (12)H9A—C9—H9B108.3
C2—C3—H3120.4O5—C10—N2121.87 (12)
C4—C3—H3120.4O5—C10—C9120.94 (10)
C8—O4—H4O109.0 (14)N2—C10—C9117.14 (12)
O6—C4—C3124.36 (12)O6—C11—H11A109.5
O6—C4—C5115.50 (12)O6—C11—H11B109.5
C3—C4—C5120.14 (11)H11A—C11—H11B109.5
C6—C5—C4120.38 (12)O6—C11—H11C109.5
C6—C5—H5119.8H11A—C11—H11C109.5
C4—C5—H5119.8H11B—C11—H11C109.5
O1—S1—N1—C7176.40 (10)C3—C4—O6—C113.51 (19)
O2—S1—N1—C754.66 (11)C5—C4—O6—C11176.95 (12)
C1—S1—N1—C759.18 (11)C4—C5—C6—C10.8 (2)
O1—S1—C1—C2148.92 (10)C2—C1—C6—C50.26 (19)
O2—S1—C1—C219.54 (12)S1—C1—C6—C5177.93 (11)
N1—S1—C1—C296.25 (11)S1—N1—C7—C8108.87 (11)
O1—S1—C1—C629.28 (12)S1—N1—C7—C9129.56 (10)
O2—S1—C1—C6158.65 (10)N1—C7—C8—O318.96 (16)
N1—S1—C1—C685.55 (11)C9—C7—C8—O3103.49 (14)
C6—C1—C2—C30.15 (19)N1—C7—C8—O4162.62 (11)
S1—C1—C2—C3178.33 (10)C9—C7—C8—O474.93 (13)
C1—C2—C3—C40.06 (19)N1—C7—C9—C1054.36 (13)
C2—C3—C4—O6179.08 (12)C8—C7—C9—C10176.96 (10)
C2—C3—C4—C50.4 (2)C7—C9—C10—O565.42 (14)
O6—C4—C5—C6178.71 (12)C7—C9—C10—N2112.13 (12)
C3—C4—C5—C60.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.812 (19)2.147 (19)2.9430 (15)166.9 (16)
N2—H2N2···O2ii0.89 (2)2.02 (2)2.8808 (16)162.9 (17)
C11—H11B···O3iii0.982.483.3701 (17)150
N1—H1N···O5ii0.927 (18)1.907 (18)2.8196 (14)167.8 (16)
O4—H4O···O5iv0.81 (2)1.79 (2)2.5875 (14)169 (2)
C9—H9A···O2ii0.992.543.4055 (16)145
Symmetry codes: (i) x1, y1/2, z; (ii) x1, y+1/2, z; (iii) x+1, y1/2, z+1; (iv) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H14N2O6S
Mr302.30
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.1462 (1), 8.9874 (2), 11.1418 (2)
β (°) 108.090 (1)
V3)680.22 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.42 × 0.26 × 0.23
Data collection
DiffractometerSiemens SMART
diffractometer equipped with a Bruker APEXII detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.897, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
15356, 3434, 3335
Rint0.028
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.04
No. of reflections3434
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23
Absolute structureFlack (1983), 1581 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.812 (19)2.147 (19)2.9430 (15)166.9 (16)
N2—H2N2···O2ii0.89 (2)2.02 (2)2.8808 (16)162.9 (17)
C11—H11B···O3iii0.982.483.3701 (17)150.2
N1—H1N···O5ii0.927 (18)1.907 (18)2.8196 (14)167.8 (16)
O4—H4O···O5iv0.81 (2)1.79 (2)2.5875 (14)169 (2)
C9—H9A···O2ii0.992.543.4055 (16)145
Symmetry codes: (i) x1, y1/2, z; (ii) x1, y+1/2, z; (iii) x+1, y1/2, z+1; (iv) x, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under its Inter­national Research Support Initiative Programme (IRSIP).

References

First citationArshad, M. N., Khan, I. U., Akkurt, M. & Shafiq, M. (2009b). Acta Cryst. E65, o1953–o1954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009a). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Wart, H. E. V. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233–1235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Arshad, M. N., Ejaz, & Idrees, M. (2009). Acta Cryst. E65, o2436.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds