organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-6-(3,5-di­methyl-1H-pyrazol-1-yl)pyridazine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and eInstituto de Quimica, Universidade Estadual de Londrina, Londrina, Pr., Brazil
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 August 2010; accepted 28 August 2010; online 4 September 2010)

In the title compound, C9H9ClN4, the dihedral angle between the aromatic rings is 6.25 (9)°. The whole mol­ecule is approximately planar (r.m.s. deviation = 0.070 Å). In the crystal, ππ inter­actions between the centroids of the pyridazine rings [separation = 3.5904 (10) Å] occur.

Related literature

For background to pyrazolylpyridazine derivatives and for related crystal structures, see: Ather et al. (2010a[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o1327.],b[Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010b). Acta Cryst. E66, o1900.],c[Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN4

  • Mr = 208.65

  • Monoclinic, P 21 /c

  • a = 11.2773 (3) Å

  • b = 8.4181 (2) Å

  • c = 11.3501 (3) Å

  • β = 116.529 (1)°

  • V = 964.05 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.932

  • 6922 measured reflections

  • 1727 independent reflections

  • 1514 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.04

  • 1727 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our studies of pyrazolylpyridazine derivatives (Ather et al., 2010a,b,c), the title compound (I, Fig. 1) is being reported here.

In the title compound, the 3-chloro-pyridazine group A (C1—C4/N1/N2/CL1) and 3,5-dimethyl-pyrazol moiety B (N3/N4/C5—C9) are planar with r. m. s. deviation of 0.0057 and 0.0121 Å, respectively. The dihedral angle between A/B is 6.40 (9)°. The title compound essentially consists of monomers. The molecules are stabilized due to ππ interactions. There exist ππ interactions between the centroids of pyridazine rings at a distance of 3.5904 (10) Å [symmetry code: 1 - x, 1 - y, 1 - z]. The centroids of pyridazine and pyrazol rings are separated at 4.1319 (9) Å [symmetry code: 1 - x, 1 - y, 1 - z] and 4.4233 (9)Å [symmetry code: 1 - x, 2 - y, 1 - z].

Related literature top

For background to pyrazolylpyridazine derivatives and for related crystal structures, see: Ather et al. (2010a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-hydrazinylpyridazine (1 g, 6.92 mmol) was dissolved in 5 ml of ethanol. To this solution acetylacetone (8 mmol) and acetic acid (0.7 ml) were added and heated for 30 min. The unreacted acetic acid was removed under vacuum and charged to 25 ml of distilled water and filtered. The final product was re-crystallized in ethanol to obtain colourless prisms of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius.
3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine top
Crystal data top
C9H9ClN4F(000) = 432
Mr = 208.65Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1514 reflections
a = 11.2773 (3) Åθ = 3.1–25.3°
b = 8.4181 (2) ŵ = 0.36 mm1
c = 11.3501 (3) ÅT = 296 K
β = 116.529 (1)°Prism, colourless
V = 964.05 (4) Å30.32 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1727 independent reflections
Radiation source: fine-focus sealed tube1514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.903, Tmax = 0.932l = 1313
6922 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3389P]
where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H9ClN4V = 964.05 (4) Å3
Mr = 208.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2773 (3) ŵ = 0.36 mm1
b = 8.4181 (2) ÅT = 296 K
c = 11.3501 (3) Å0.32 × 0.24 × 0.20 mm
β = 116.529 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1514 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.932Rint = 0.022
6922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
1727 reflectionsΔρmin = 0.19 e Å3
129 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76089 (4)0.97122 (6)0.60328 (4)0.0581 (2)
N10.56592 (14)0.81330 (18)0.60486 (13)0.0495 (5)
N20.45739 (14)0.71964 (18)0.55421 (13)0.0487 (5)
N30.29683 (12)0.57550 (16)0.38434 (12)0.0419 (4)
N40.25369 (14)0.50746 (16)0.26163 (13)0.0465 (4)
C10.62272 (15)0.84978 (19)0.53015 (15)0.0427 (5)
C20.58063 (16)0.7982 (2)0.40156 (16)0.0480 (5)
C30.47217 (16)0.7034 (2)0.35066 (15)0.0460 (5)
C40.41180 (14)0.66847 (18)0.43182 (14)0.0389 (5)
C50.21463 (16)0.5362 (2)0.44074 (16)0.0449 (5)
C60.11915 (17)0.4428 (2)0.35130 (17)0.0510 (6)
C70.14674 (16)0.4269 (2)0.24272 (16)0.0464 (5)
C80.07365 (19)0.3310 (3)0.12074 (19)0.0620 (7)
C90.23144 (19)0.5897 (3)0.57258 (17)0.0589 (6)
H20.624800.827380.352580.0576*
H30.439290.663220.265550.0551*
H60.048310.397410.360070.0612*
H8A0.116720.340890.064800.0930*
H8B0.015820.368890.074980.0930*
H8C0.073040.221430.144000.0930*
H9A0.157890.553080.586220.0883*
H9B0.235010.703580.576650.0883*
H9C0.312250.546730.639740.0883*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0593 (3)0.0588 (3)0.0592 (3)0.0085 (2)0.0291 (2)0.0040 (2)
N10.0543 (8)0.0585 (9)0.0412 (7)0.0008 (7)0.0264 (6)0.0005 (6)
N20.0513 (8)0.0624 (9)0.0396 (7)0.0016 (7)0.0268 (6)0.0009 (6)
N30.0427 (7)0.0509 (8)0.0372 (7)0.0059 (6)0.0223 (6)0.0047 (6)
N40.0480 (8)0.0545 (8)0.0410 (7)0.0031 (6)0.0234 (6)0.0009 (6)
C10.0446 (8)0.0435 (8)0.0429 (9)0.0066 (7)0.0222 (7)0.0050 (7)
C20.0487 (9)0.0617 (10)0.0422 (9)0.0029 (8)0.0280 (7)0.0064 (7)
C30.0471 (9)0.0607 (10)0.0356 (8)0.0041 (7)0.0234 (7)0.0025 (7)
C40.0408 (8)0.0433 (8)0.0369 (8)0.0105 (6)0.0213 (6)0.0084 (6)
C50.0443 (9)0.0525 (9)0.0456 (9)0.0093 (7)0.0269 (7)0.0098 (7)
C60.0443 (9)0.0581 (10)0.0564 (10)0.0033 (8)0.0277 (8)0.0084 (8)
C70.0438 (9)0.0474 (9)0.0484 (9)0.0069 (7)0.0209 (7)0.0053 (7)
C80.0608 (11)0.0638 (12)0.0592 (11)0.0047 (9)0.0249 (9)0.0061 (9)
C90.0569 (10)0.0818 (13)0.0511 (10)0.0020 (10)0.0360 (9)0.0010 (9)
Geometric parameters (Å, º) top
Cl1—C11.7340 (18)C5—C91.492 (3)
N1—N21.350 (2)C6—C71.406 (3)
N1—C11.307 (2)C7—C81.493 (3)
N2—C41.320 (2)C2—H20.9300
N3—N41.3781 (18)C3—H30.9300
N3—C41.400 (2)C6—H60.9300
N3—C51.382 (2)C8—H8A0.9600
N4—C71.315 (2)C8—H8B0.9600
C1—C21.388 (2)C8—H8C0.9600
C2—C31.355 (3)C9—H9A0.9600
C3—C41.400 (2)C9—H9B0.9600
C5—C61.353 (2)C9—H9C0.9600
N2—N1—C1118.35 (14)C6—C7—C8128.16 (18)
N1—N2—C4119.46 (15)C1—C2—H2122.00
N4—N3—C4118.01 (14)C3—C2—H2122.00
N4—N3—C5111.21 (14)C2—C3—H3121.00
C4—N3—C5130.79 (13)C4—C3—H3121.00
N3—N4—C7105.27 (14)C5—C6—H6126.00
Cl1—C1—N1115.08 (12)C7—C6—H6126.00
Cl1—C1—C2120.01 (14)C7—C8—H8A109.00
N1—C1—C2124.91 (16)C7—C8—H8B109.00
C1—C2—C3116.90 (17)C7—C8—H8C109.00
C2—C3—C4117.07 (15)H8A—C8—H8B109.00
N2—C4—N3116.49 (15)H8A—C8—H8C109.00
N2—C4—C3123.29 (16)H8B—C8—H8C109.00
N3—C4—C3120.22 (13)C5—C9—H9A109.00
N3—C5—C6105.38 (15)C5—C9—H9B109.00
N3—C5—C9125.57 (16)C5—C9—H9C109.00
C6—C5—C9129.05 (19)H9A—C9—H9B109.00
C5—C6—C7107.42 (17)H9A—C9—H9C109.00
N4—C7—C6110.72 (15)H9B—C9—H9C109.00
N4—C7—C8121.10 (17)
C1—N1—N2—C40.2 (2)C4—N3—C5—C6179.65 (16)
N2—N1—C1—Cl1179.72 (12)C4—N3—C5—C90.8 (3)
N2—N1—C1—C20.6 (3)N3—N4—C7—C60.49 (19)
N1—N2—C4—N3178.28 (14)N3—N4—C7—C8177.82 (16)
N1—N2—C4—C31.5 (3)Cl1—C1—C2—C3179.88 (13)
C4—N3—N4—C7179.37 (14)N1—C1—C2—C30.2 (3)
C5—N3—N4—C70.21 (18)C1—C2—C3—C40.9 (2)
N4—N3—C4—N2173.89 (14)C2—C3—C4—N21.8 (3)
N4—N3—C4—C36.4 (2)C2—C3—C4—N3177.92 (15)
C5—N3—C4—N25.6 (3)N3—C5—C6—C70.43 (19)
C5—N3—C4—C3174.15 (16)C9—C5—C6—C7179.98 (19)
N4—N3—C5—C60.15 (19)C5—C6—C7—N40.6 (2)
N4—N3—C5—C9179.73 (17)C5—C6—C7—C8177.56 (19)

Experimental details

Crystal data
Chemical formulaC9H9ClN4
Mr208.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.2773 (3), 8.4181 (2), 11.3501 (3)
β (°) 116.529 (1)
V3)964.05 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.903, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
6922, 1727, 1514
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.04
No. of reflections1727
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010b). Acta Cryst. E66, o1900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds