metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(tri­fluoro­methane­sulfonato)­bis­­(1,3,7-tri­methyl­purine-2,6-dione)silver(I)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 August 2010; accepted 1 September 2010; online 4 September 2010)

In the title compound, [Ag(CF3SO3)(C8H10N4O2)2(H2O)], the AgI atom is coordinated by two caffeine N atoms and, at longer distances, two O atoms of a coordinated water mol­ecule and the trifluoro­methane­sulfonate anion, resulting in an AgN2O2 seesaw geometry. The caffeine mol­ecules are roughly coplanar [dihedral angle = 5.81 (5)°]. In the crystal, mol­ecules self-assemble into a linear supra­molecular chain along the c axis via O—H⋯O hydrogen bonds involving the coordinated water moledcule and carbonyl O atoms. The packing is consolidated by weak C—H⋯O inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010[Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269-1282.]). For a related Ag structure, see: Arman et al. (2010[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167-m1168.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(CF3SO3)(C8H10N4O2)2(H2O)]

  • Mr = 663.36

  • Triclinic, [P \overline 1]

  • a = 8.9012 (10) Å

  • b = 10.0408 (8) Å

  • c = 15.457 (2) Å

  • α = 72.091 (7)°

  • β = 85.444 (9)°

  • γ = 63.672 (6)°

  • V = 1175.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 98 K

  • 0.42 × 0.27 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.568, Tmax = 1

  • 7271 measured reflections

  • 5323 independent reflections

  • 5140 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.14

  • 5323 reflections

  • 355 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag—N7 2.213 (2)
Ag—N3 2.218 (2)
Ag—O1w 2.4347 (19)
Ag—O7 2.5591 (19)
N7—Ag—N3 165.48 (8)
N7—Ag—O1w 98.70 (8)
N3—Ag—O1w 95.81 (7)
N7—Ag—O7 90.01 (7)
N3—Ag—O7 88.93 (7)
O1w—Ag—O7 92.39 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O1i 0.84 1.89 2.724 (3) 170
O1w—H2w⋯O3ii 0.84 1.89 2.701 (3) 163
C10—H10c⋯O1wii 0.98 2.55 3.428 (4) 149
C15—H15c⋯O4ii 0.98 2.60 3.382 (4) 137
C4—H4b⋯O6iii 0.98 2.41 3.252 (4) 144
C12—H12c⋯O5iii 0.98 2.36 3.278 (4) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of recent structural studies on silver salts (Arman et al., 2010), of fascination owing to the structural diversity of their supramolecular structures (Kundu et al., 2010), the title compound, (I), was isolated and characterized.

The Ag atom in (I) is coordinated by a water molecule, two N atoms derived from two caffeine molecules and an O atom from the trifluoromethanesulfonate anion, Fig. 1. While the Ag—N bond distances are experimentally equivalent, they are shorter than the Ag—O(water) and even longer Ag—O(trifluoromethanesulfonate) distances, Table 1. Reflecting the disparity in the Ag—X bond distances, the N2O2 coordination geometry is highly distorted tetrahedral owing to the dominanace of the Ag—N bonds that are almost diagonally opposite [N3—Ag—N7 = 165.48 (8) °]. Each of the N3- and N7-caffeine rings is planar [r.m.s. deviation of the 14 non-hydrogen atoms = 0.013 and 0.029 Å, respectively] and are almost co-planar as seen in the dihedral angle formed between them of 5.81 (5) °.

In the crystal packing, centrosymmetrically related molecules associate via O—H···O hydrogen bonds formed between the coordinated water molecule and carbonyl-O, Fig. 2 and Table 2. This arrangement is stabilized by C—H···O interactions involving the O1w and O4 atoms as acceptors, Table 1, and π···π [ring centroid(N1,N2,C1,C3,C5,C8)···centroid(N1,N2,C1,C3,C5,C8)i = 3.5605 (16) ° for i: 2 - x, 1 - y, 1 - z] contacts. The primary interactions linking the resulting supramolecular chains aligned along the c axis are of the type C—H···O, Fig. 3 and Table 1.

Related literature top

For structural diversity in the supramolecular structures of silver salts, see: Kundu et al. (2010). For a related Ag structure, see: Arman et al. (2010).

Experimental top

Caffeine (Analytical & Research Chemical Company, 0.015 g, 0.08 mmol) was dissolved in 5 ml of ethanol and silver trifluoromethanesulfonate (ACROS, 0.012 g, 0.04 mmol) also dissolved in 5 ml of ethanol was added to this. The resulting solution was gently heated and allowed to stand for slow evaporation, which afforded colourless blocks of (I) after 10 days; m. pt: 447–451 K. IR (cm-1): ν(O—H) 3454, ν(CO) 1700, ν(CN)1549, ν(C—F) 1156, ν(S—O) 1028.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O—H atoms were refined with O—H = 0.8400±0.0001, and with Uiso(H) set to 1.5Ueq(C)

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Portion of the supramolecular chain aligned along the c axis in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I). The O—H···O hydrogen bonds and C—H···O contacts are shown as orange and blue dashed lines, respectively.
Aqua(trifluoromethanesulfonato)bis(1,3,7-trimethylpurine-2,6-dione)silver(I) top
Crystal data top
[Ag(CF3SO3)(C8H10N4O2)2(H2O)]Z = 2
Mr = 663.36F(000) = 668
Triclinic, P1Dx = 1.874 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.9012 (10) ÅCell parameters from 3724 reflections
b = 10.0408 (8) Åθ = 2.4–40.6°
c = 15.457 (2) ŵ = 1.03 mm1
α = 72.091 (7)°T = 98 K
β = 85.444 (9)°Block, colorless
γ = 63.672 (6)°0.42 × 0.27 × 0.10 mm
V = 1175.6 (2) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5323 independent reflections
Radiation source: fine-focus sealed tube5140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.568, Tmax = 1k = 1311
7271 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.1737P]
where P = (Fo2 + 2Fc2)/3
5323 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Ag(CF3SO3)(C8H10N4O2)2(H2O)]γ = 63.672 (6)°
Mr = 663.36V = 1175.6 (2) Å3
Triclinic, P1Z = 2
a = 8.9012 (10) ÅMo Kα radiation
b = 10.0408 (8) ŵ = 1.03 mm1
c = 15.457 (2) ÅT = 98 K
α = 72.091 (7)°0.42 × 0.27 × 0.10 mm
β = 85.444 (9)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5323 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5140 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 1Rint = 0.020
7271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.14Δρmax = 0.63 e Å3
5323 reflectionsΔρmin = 0.86 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.92178 (2)0.48844 (2)0.188475 (12)0.01653 (8)
S11.24387 (8)0.07772 (7)0.21533 (4)0.01613 (13)
F11.1161 (2)0.1212 (2)0.27088 (15)0.0355 (4)
F21.3860 (2)0.2279 (2)0.27639 (14)0.0331 (4)
F31.2548 (3)0.1155 (2)0.37600 (12)0.0356 (4)
O11.2942 (2)0.5290 (2)0.54121 (13)0.0215 (4)
O20.7737 (3)0.9110 (2)0.41597 (14)0.0233 (4)
O30.5572 (2)0.5224 (2)0.19291 (13)0.0217 (4)
O40.3195 (2)0.9238 (2)0.06788 (13)0.0200 (4)
O1w0.6921 (2)0.4768 (3)0.28220 (13)0.0225 (4)
H1w0.69220.46690.33820.034*
H2w0.60350.48120.26350.034*
O51.2439 (3)0.0652 (3)0.12484 (14)0.0292 (5)
O61.3918 (3)0.0794 (2)0.24474 (17)0.0295 (5)
O71.0872 (2)0.1910 (2)0.23664 (13)0.0196 (4)
N11.0320 (3)0.7175 (3)0.47948 (15)0.0161 (4)
N20.9007 (3)0.7135 (3)0.35260 (15)0.0160 (4)
N31.0696 (3)0.4918 (3)0.29602 (15)0.0170 (4)
N41.2894 (3)0.3795 (3)0.39758 (15)0.0160 (4)
N50.4349 (3)0.7199 (3)0.12752 (15)0.0160 (4)
N60.5649 (3)0.7186 (3)0.00204 (14)0.0155 (4)
N70.8288 (3)0.4857 (3)0.06071 (15)0.0172 (4)
N80.8324 (3)0.3657 (3)0.04021 (15)0.0166 (4)
C11.1779 (3)0.5806 (3)0.48418 (17)0.0156 (5)
C21.0253 (4)0.7989 (3)0.54543 (18)0.0208 (5)
H2A1.11360.83430.53460.031*
H2B1.04270.72750.60750.031*
H2C0.91530.88920.53810.031*
C30.8935 (3)0.7894 (3)0.41529 (18)0.0169 (5)
C40.7618 (3)0.7835 (3)0.28352 (19)0.0206 (5)
H4A0.79940.82070.22350.031*
H4B0.66820.87140.29780.031*
H4C0.72470.70520.28290.031*
C51.0406 (3)0.5789 (3)0.35362 (17)0.0143 (5)
C61.2221 (3)0.3717 (3)0.32635 (18)0.0168 (5)
H61.27610.28980.29970.020*
C71.4535 (3)0.2678 (3)0.44590 (19)0.0207 (5)
H7A1.51360.19060.41380.031*
H7B1.43720.21470.50810.031*
H7C1.51930.32340.44810.031*
C81.1738 (3)0.5129 (3)0.41647 (17)0.0147 (5)
C90.5606 (3)0.5776 (3)0.13270 (17)0.0154 (5)
C100.2981 (3)0.8070 (3)0.19966 (19)0.0207 (5)
H10A0.33850.85530.25560.031*
H10B0.20400.88830.18030.031*
H10C0.26050.73540.21110.031*
C110.4333 (3)0.7971 (3)0.06454 (17)0.0154 (5)
C120.5725 (3)0.7927 (3)0.06883 (18)0.0202 (5)
H12A0.66280.82530.05540.030*
H12B0.59480.71820.13020.030*
H12C0.46510.88420.06550.030*
C130.6907 (3)0.5769 (3)0.00148 (17)0.0149 (5)
C140.9101 (3)0.3590 (3)0.03247 (17)0.0174 (5)
H141.01260.27340.06130.021*
C150.8874 (4)0.2440 (3)0.08522 (19)0.0203 (5)
H15A1.00150.16500.06150.030*
H15B0.88650.29080.15110.030*
H15C0.81100.19500.07310.030*
C160.6894 (3)0.5071 (3)0.06174 (17)0.0159 (5)
C171.2518 (3)0.1069 (3)0.28803 (19)0.0200 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.01694 (11)0.01610 (12)0.01605 (11)0.00609 (8)0.00257 (7)0.00519 (8)
S10.0131 (3)0.0120 (3)0.0189 (3)0.0024 (2)0.0012 (2)0.0038 (2)
F10.0277 (9)0.0307 (10)0.0546 (12)0.0190 (8)0.0034 (9)0.0122 (9)
F20.0281 (9)0.0136 (8)0.0456 (11)0.0009 (7)0.0068 (8)0.0071 (8)
F30.0466 (12)0.0338 (10)0.0181 (8)0.0151 (9)0.0034 (8)0.0013 (7)
O10.0206 (10)0.0245 (10)0.0188 (9)0.0079 (8)0.0022 (8)0.0080 (8)
O20.0214 (10)0.0174 (10)0.0259 (10)0.0028 (8)0.0015 (8)0.0078 (8)
O30.0203 (9)0.0267 (11)0.0209 (10)0.0088 (8)0.0008 (8)0.0129 (8)
O40.0192 (9)0.0153 (9)0.0216 (9)0.0038 (7)0.0007 (7)0.0060 (7)
O1w0.0198 (10)0.0333 (11)0.0189 (9)0.0131 (9)0.0027 (8)0.0122 (9)
O50.0284 (11)0.0232 (11)0.0189 (10)0.0030 (9)0.0027 (8)0.0059 (8)
O60.0157 (9)0.0203 (10)0.0511 (14)0.0071 (8)0.0003 (9)0.0095 (10)
O70.0154 (9)0.0161 (9)0.0239 (10)0.0021 (7)0.0002 (7)0.0089 (8)
N10.0174 (10)0.0149 (10)0.0145 (10)0.0062 (9)0.0006 (8)0.0037 (8)
N20.0144 (10)0.0118 (10)0.0184 (10)0.0037 (8)0.0032 (8)0.0024 (8)
N30.0152 (10)0.0150 (10)0.0205 (11)0.0066 (9)0.0003 (8)0.0051 (9)
N40.0135 (10)0.0146 (10)0.0192 (10)0.0049 (8)0.0003 (8)0.0061 (8)
N50.0164 (10)0.0142 (10)0.0153 (10)0.0059 (8)0.0016 (8)0.0027 (8)
N60.0179 (10)0.0136 (10)0.0138 (10)0.0053 (8)0.0002 (8)0.0048 (8)
N70.0161 (10)0.0168 (11)0.0139 (10)0.0037 (9)0.0013 (8)0.0032 (8)
N80.0169 (10)0.0129 (10)0.0165 (10)0.0041 (8)0.0009 (8)0.0037 (8)
C10.0161 (12)0.0153 (12)0.0160 (11)0.0084 (10)0.0016 (9)0.0035 (9)
C20.0258 (14)0.0180 (13)0.0182 (12)0.0079 (11)0.0015 (10)0.0078 (10)
C30.0169 (12)0.0150 (12)0.0184 (12)0.0082 (10)0.0005 (10)0.0025 (10)
C40.0163 (12)0.0160 (12)0.0250 (13)0.0027 (10)0.0067 (10)0.0049 (10)
C50.0135 (11)0.0141 (11)0.0163 (11)0.0071 (9)0.0006 (9)0.0042 (9)
C60.0161 (12)0.0159 (12)0.0188 (12)0.0065 (10)0.0004 (9)0.0062 (10)
C70.0118 (11)0.0196 (13)0.0239 (13)0.0009 (10)0.0030 (10)0.0059 (11)
C80.0143 (11)0.0123 (11)0.0169 (11)0.0052 (9)0.0008 (9)0.0046 (9)
C90.0141 (11)0.0153 (12)0.0164 (11)0.0068 (9)0.0027 (9)0.0044 (9)
C100.0181 (12)0.0188 (13)0.0227 (13)0.0065 (10)0.0062 (10)0.0037 (11)
C110.0164 (11)0.0142 (12)0.0141 (11)0.0068 (9)0.0007 (9)0.0022 (9)
C120.0216 (13)0.0179 (13)0.0186 (12)0.0053 (10)0.0015 (10)0.0070 (10)
C130.0155 (11)0.0148 (12)0.0138 (11)0.0074 (10)0.0018 (9)0.0025 (9)
C140.0157 (12)0.0163 (12)0.0162 (12)0.0044 (10)0.0013 (9)0.0033 (10)
C150.0230 (13)0.0165 (12)0.0213 (13)0.0067 (10)0.0034 (10)0.0093 (10)
C160.0155 (12)0.0128 (11)0.0158 (11)0.0036 (9)0.0014 (9)0.0039 (9)
C170.0183 (12)0.0155 (12)0.0232 (13)0.0054 (10)0.0031 (10)0.0054 (10)
Geometric parameters (Å, º) top
Ag—N72.213 (2)N6—C111.388 (3)
Ag—N32.218 (2)N6—C121.467 (3)
Ag—O1w2.4347 (19)N7—C141.344 (3)
Ag—O72.5591 (19)N7—C131.361 (3)
S1—O61.436 (2)N8—C141.335 (3)
S1—O51.442 (2)N8—C161.386 (3)
S1—O71.4482 (19)N8—C151.468 (3)
S1—C171.822 (3)C1—C81.423 (4)
F1—C171.334 (3)C2—H2A0.9800
F2—C171.322 (3)C2—H2B0.9800
F3—C171.338 (3)C2—H2C0.9800
O1—C11.227 (3)C4—H4A0.9800
O2—C31.216 (3)C4—H4B0.9800
O3—C91.229 (3)C4—H4C0.9800
O4—C111.213 (3)C5—C81.371 (4)
O1w—H1w0.8401C6—H60.9500
O1w—H2w0.8400C7—H7A0.9800
N1—C11.397 (3)C7—H7B0.9800
N1—C31.411 (3)C7—H7C0.9800
N1—C21.473 (3)C9—C161.422 (4)
N2—C51.369 (3)C10—H10A0.9800
N2—C31.388 (3)C10—H10B0.9800
N2—C41.463 (3)C10—H10C0.9800
N3—C61.349 (3)C12—H12A0.9800
N3—C51.365 (3)C12—H12B0.9800
N4—C61.333 (3)C12—H12C0.9800
N4—C81.381 (3)C13—C161.370 (4)
N4—C71.468 (3)C14—H140.9500
N5—C91.392 (3)C15—H15A0.9800
N5—C111.415 (3)C15—H15B0.9800
N5—C101.471 (3)C15—H15C0.9800
N6—C131.368 (3)
N7—Ag—N3165.48 (8)H4A—C4—H4C109.5
N7—Ag—O1w98.70 (8)H4B—C4—H4C109.5
N3—Ag—O1w95.81 (7)N3—C5—N2127.2 (2)
N7—Ag—O790.01 (7)N3—C5—C8110.6 (2)
N3—Ag—O788.93 (7)N2—C5—C8122.2 (2)
O1w—Ag—O792.39 (7)N4—C6—N3113.1 (2)
O6—S1—O5115.21 (14)N4—C6—H6123.5
O6—S1—O7114.71 (13)N3—C6—H6123.5
O5—S1—O7114.71 (12)N4—C7—H7A109.5
O6—S1—C17104.22 (13)N4—C7—H7B109.5
O5—S1—C17103.14 (13)H7A—C7—H7B109.5
O7—S1—C17102.51 (12)N4—C7—H7C109.5
Ag—O1w—H1w123.9H7A—C7—H7C109.5
Ag—O1w—H2w125.1H7B—C7—H7C109.5
H1W—O1w—H2w111.1C5—C8—N4106.2 (2)
S1—O7—Ag136.78 (12)C5—C8—C1122.5 (2)
C1—N1—C3126.5 (2)N4—C8—C1131.3 (2)
C1—N1—C2116.8 (2)O3—C9—N5122.4 (2)
C3—N1—C2116.7 (2)O3—C9—C16125.2 (2)
C5—N2—C3119.6 (2)N5—C9—C16112.4 (2)
C5—N2—C4121.2 (2)N5—C10—H10A109.5
C3—N2—C4119.1 (2)N5—C10—H10B109.5
C6—N3—C5103.9 (2)H10A—C10—H10B109.5
C6—N3—Ag119.15 (18)N5—C10—H10C109.5
C5—N3—Ag136.34 (18)H10A—C10—H10C109.5
C6—N4—C8106.3 (2)H10B—C10—H10C109.5
C6—N4—C7126.5 (2)O4—C11—N6122.3 (2)
C8—N4—C7127.3 (2)O4—C11—N5121.0 (2)
C9—N5—C11126.4 (2)N6—C11—N5116.6 (2)
C9—N5—C10117.3 (2)N6—C12—H12A109.5
C11—N5—C10116.0 (2)N6—C12—H12B109.5
C13—N6—C11119.6 (2)H12A—C12—H12B109.5
C13—N6—C12120.8 (2)N6—C12—H12C109.5
C11—N6—C12119.6 (2)H12A—C12—H12C109.5
C14—N7—C13104.0 (2)H12B—C12—H12C109.5
C14—N7—Ag119.11 (17)N7—C13—N6127.1 (2)
C13—N7—Ag136.45 (18)N7—C13—C16110.8 (2)
C14—N8—C16106.0 (2)N6—C13—C16122.1 (2)
C14—N8—C15126.0 (2)N8—C14—N7113.2 (2)
C16—N8—C15127.9 (2)N8—C14—H14123.4
O1—C1—N1121.8 (2)N7—C14—H14123.4
O1—C1—C8125.7 (2)N8—C15—H15A109.5
N1—C1—C8112.5 (2)N8—C15—H15B109.5
N1—C2—H2A109.5H15A—C15—H15B109.5
N1—C2—H2B109.5N8—C15—H15C109.5
H2A—C2—H2B109.5H15A—C15—H15C109.5
N1—C2—H2C109.5H15B—C15—H15C109.5
H2A—C2—H2C109.5C13—C16—N8106.0 (2)
H2B—C2—H2C109.5C13—C16—C9122.8 (2)
O2—C3—N2122.2 (2)N8—C16—C9131.2 (2)
O2—C3—N1121.2 (2)F2—C17—F1108.1 (2)
N2—C3—N1116.6 (2)F2—C17—F3107.9 (2)
N2—C4—H4A109.5F1—C17—F3107.0 (2)
N2—C4—H4B109.5F2—C17—S1112.01 (19)
H4A—C4—H4B109.5F1—C17—S1110.82 (19)
N2—C4—H4C109.5F3—C17—S1110.9 (2)
O6—S1—O7—Ag66.6 (2)O1—C1—C8—C5178.7 (2)
O5—S1—O7—Ag70.1 (2)N1—C1—C8—C50.9 (3)
C17—S1—O7—Ag178.87 (16)O1—C1—C8—N40.7 (5)
N7—Ag—O7—S178.84 (17)N1—C1—C8—N4179.7 (2)
N3—Ag—O7—S186.68 (17)C11—N5—C9—O3175.7 (2)
O1w—Ag—O7—S1177.55 (17)C10—N5—C9—O32.2 (4)
N7—Ag—N3—C662.4 (4)C11—N5—C9—C164.1 (4)
O1w—Ag—N3—C6115.84 (19)C10—N5—C9—C16177.6 (2)
O7—Ag—N3—C623.54 (19)C13—N6—C11—O4179.2 (2)
N7—Ag—N3—C5128.5 (3)C12—N6—C11—O42.8 (4)
O1w—Ag—N3—C553.3 (3)C13—N6—C11—N52.8 (3)
O7—Ag—N3—C5145.6 (2)C12—N6—C11—N5179.2 (2)
N3—Ag—N7—C1467.4 (4)C9—N5—C11—O4177.6 (2)
O1w—Ag—N7—C14110.8 (2)C10—N5—C11—O44.1 (4)
O7—Ag—N7—C1418.4 (2)C9—N5—C11—N64.3 (4)
N3—Ag—N7—C13121.7 (3)C10—N5—C11—N6177.8 (2)
O1w—Ag—N7—C1360.1 (3)C14—N7—C13—N6178.6 (2)
O7—Ag—N7—C13152.5 (3)Ag—N7—C13—N66.8 (4)
C3—N1—C1—O1178.0 (2)C14—N7—C13—C160.5 (3)
C2—N1—C1—O11.0 (4)Ag—N7—C13—C16172.28 (19)
C3—N1—C1—C81.7 (3)C11—N6—C13—N7179.3 (2)
C2—N1—C1—C8178.6 (2)C12—N6—C13—N72.9 (4)
C5—N2—C3—O2178.4 (2)C11—N6—C13—C161.7 (4)
C4—N2—C3—O21.6 (4)C12—N6—C13—C16178.1 (2)
C5—N2—C3—N12.3 (3)C16—N8—C14—N70.1 (3)
C4—N2—C3—N1179.2 (2)C15—N8—C14—N7178.3 (2)
C1—N1—C3—O2178.3 (2)C13—N7—C14—N80.2 (3)
C2—N1—C3—O21.4 (4)Ag—N7—C14—N8173.80 (17)
C1—N1—C3—N22.4 (4)N7—C13—C16—N80.5 (3)
C2—N1—C3—N2179.3 (2)N6—C13—C16—N8178.7 (2)
C6—N3—C5—N2179.1 (2)N7—C13—C16—C9179.1 (2)
Ag—N3—C5—N28.8 (4)N6—C13—C16—C91.7 (4)
C6—N3—C5—C80.6 (3)C14—N8—C16—C130.3 (3)
Ag—N3—C5—C8170.88 (18)C15—N8—C16—C13178.0 (2)
C3—N2—C5—N3178.5 (2)C14—N8—C16—C9179.2 (3)
C4—N2—C5—N31.7 (4)C15—N8—C16—C92.5 (4)
C3—N2—C5—C81.8 (4)O3—C9—C16—C13177.1 (2)
C4—N2—C5—C8178.6 (2)N5—C9—C16—C132.7 (4)
C8—N4—C6—N30.5 (3)O3—C9—C16—N82.4 (5)
C7—N4—C6—N3179.7 (2)N5—C9—C16—N8177.8 (3)
C5—N3—C6—N40.7 (3)O6—S1—C17—F262.1 (2)
Ag—N3—C6—N4172.98 (17)O5—S1—C17—F258.6 (2)
N3—C5—C8—N40.4 (3)O7—S1—C17—F2178.0 (2)
N2—C5—C8—N4179.4 (2)O6—S1—C17—F1177.1 (2)
N3—C5—C8—C1179.2 (2)O5—S1—C17—F162.2 (2)
N2—C5—C8—C11.1 (4)O7—S1—C17—F157.3 (2)
C6—N4—C8—C50.0 (3)O6—S1—C17—F358.5 (2)
C7—N4—C8—C5179.9 (2)O5—S1—C17—F3179.17 (19)
C6—N4—C8—C1179.5 (3)O7—S1—C17—F361.4 (2)
C7—N4—C8—C10.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O1i0.841.892.724 (3)170
O1w—H2w···O3ii0.841.892.701 (3)163
C10—H10c···O1wii0.982.553.428 (4)149
C15—H15c···O4ii0.982.603.382 (4)137
C4—H4b···O6iii0.982.413.252 (4)144
C12—H12c···O5iii0.982.363.278 (4)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(CF3SO3)(C8H10N4O2)2(H2O)]
Mr663.36
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.9012 (10), 10.0408 (8), 15.457 (2)
α, β, γ (°)72.091 (7), 85.444 (9), 63.672 (6)
V3)1175.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.42 × 0.27 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.568, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7271, 5323, 5140
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.14
No. of reflections5323
No. of parameters355
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.86

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ag—N72.213 (2)Ag—O1w2.4347 (19)
Ag—N32.218 (2)Ag—O72.5591 (19)
N7—Ag—N3165.48 (8)N7—Ag—O790.01 (7)
N7—Ag—O1w98.70 (8)N3—Ag—O788.93 (7)
N3—Ag—O1w95.81 (7)O1w—Ag—O792.39 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O1i0.841.892.724 (3)170
O1w—H2w···O3ii0.841.892.701 (3)163
C10—H10c···O1wii0.982.553.428 (4)149
C15—H15c···O4ii0.982.603.382 (4)137
C4—H4b···O6iii0.982.413.252 (4)144
C12—H12c···O5iii0.982.363.278 (4)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z.
 

References

First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds