organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-nitro­benzaldehyde thio­semicarbazone

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 5 September 2010; accepted 6 September 2010; online 11 September 2010)

The title Schiff base compound, C8H7ClN4O2S, was prepared by the reaction of equimolar quanti­ties of 2-chloro-5-nitro­benzaldehyde with thio­semicarbazide in methanol. The mol­ecule adopts a trans configuration with respect to the azomethine group and the dihedral angle between the benzene ring and the thio­semicarbazide group is 6.8 (3)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯S hydrogen bonds, forming chains propagating in [010].

Related literature

For the crystal structures of similar Schiff base compounds, see: Ferrari et al. (1999[Ferrari, M. B., Capacchi, S., Pelosi, G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (1999). Inorg. Chim. Acta, 286, 134-141.]); Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Fun, H.-K., Zhang, X.-J., Tian, Y.-P., Xie, F.-X. & Ma, J.-L. (2000). Acta Cryst. C56, 1238-1239.]); Chattopadhyay et al. (1988[Chattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025-1028.]). For a similar compound reported by the author, see: Hao (2010[Hao, Y.-M. (2010). Acta Cryst. E66, o2211.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN4O2S

  • Mr = 258.69

  • Monoclinic, P 21 /c

  • a = 11.611 (2) Å

  • b = 8.439 (2) Å

  • c = 12.016 (3) Å

  • β = 113.909 (2)°

  • V = 1076.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.909, Tmax = 0.914

  • 6657 measured reflections

  • 2344 independent reflections

  • 1573 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.02

  • 2344 reflections

  • 154 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯S1i 0.89 (1) 2.53 (1) 3.408 (2) 173 (2)
N3—H3⋯S1ii 0.90 (1) 2.46 (1) 3.3266 (19) 161 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the crystal structures of a number of Schiff base compounds bearing the hydrazone groups derived from the thiosemicarbazide with aldehydes have been reported (Ferrari et al., 1999; Shanmuga Sundara Raj et al., 2000; Chattopadhyay et al., 1988). Recently, the author has reported a Schiff base compound derived from the thiosemicarbazide with 2-hydroxy-4-methoxybenzaldehyde (Hao, 2010), in this paper, the title new Schiff base compound, (I), Fig. 1, is reported.

The molecule of the title compound adopts a trans configuration with respect to the azomethine group. All the bond lengths are within normal values (Allen et al., 1987). The dihedral angle between the C1-C6 benzene ring and the plane defined by N2-N3-C8-S1-N4 is 6.8 (3)°, indicating the planar of the molecule. In the crystal structure, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), to form chains (Fig. 2).

Related literature top

For the crystal structures of similar Schiff base compounds, see: Ferrari et al. (1999); Shanmuga Sundara Raj et al. (2000); Chattopadhyay et al. (1988). For a similar compound reported by the author, see: Hao (2010). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Chloro-5-nitrobenzaldehyde (0.1 mmol, 18.6 mg) and thiosemicarbazide (0.1 mmol, 9.1 mg) were refluxed in methanol (30 ml) for 30 min to give a clear yellow solution. Yellow blocks of (I) were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

H3, H4A and H4B were located from a difference Fourier map and refined isotropically, with the N—H and H···H distances restrained to 0.90 (1) Å and 1.43 (2) Å, respectively, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.
2-Chloro-5-nitrobenzaldehyde thiosemicarbazone top
Crystal data top
C8H7ClN4O2SF(000) = 528
Mr = 258.69Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1613 reflections
a = 11.611 (2) Åθ = 2.8–24.7°
b = 8.439 (2) ŵ = 0.54 mm1
c = 12.016 (3) ÅT = 298 K
β = 113.909 (2)°Block, yellow
V = 1076.4 (4) Å30.18 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2344 independent reflections
Radiation source: fine-focus sealed tube1573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.909, Tmax = 0.914k = 710
6657 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1148P]
where P = (Fo2 + 2Fc2)/3
2344 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H7ClN4O2SV = 1076.4 (4) Å3
Mr = 258.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.611 (2) ŵ = 0.54 mm1
b = 8.439 (2) ÅT = 298 K
c = 12.016 (3) Å0.18 × 0.17 × 0.17 mm
β = 113.909 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2344 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1573 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.914Rint = 0.038
6657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
2344 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22502 (8)0.41154 (8)0.48549 (7)0.0669 (3)
N10.11203 (19)0.1863 (3)0.67884 (19)0.0541 (6)
N20.33718 (17)0.0503 (2)0.40689 (17)0.0402 (5)
N30.39548 (18)0.0489 (2)0.32765 (18)0.0409 (5)
N40.4229 (2)0.3150 (2)0.3570 (2)0.0543 (6)
O10.13241 (19)0.3120 (2)0.64124 (19)0.0694 (6)
O20.0674 (2)0.1755 (3)0.7540 (2)0.0965 (8)
S10.50185 (6)0.18861 (7)0.19837 (6)0.0460 (2)
C10.2313 (2)0.0903 (3)0.50752 (19)0.0375 (5)
C20.1926 (2)0.2336 (3)0.5392 (2)0.0424 (6)
C30.1273 (2)0.2416 (3)0.6133 (2)0.0504 (6)
H3A0.10130.33890.63140.061*
C40.1014 (2)0.1031 (3)0.6600 (2)0.0506 (6)
H40.05840.10540.71070.061*
C50.1405 (2)0.0385 (3)0.6300 (2)0.0422 (6)
C60.2036 (2)0.0480 (3)0.5549 (2)0.0406 (5)
H60.22750.14600.53600.049*
C70.2974 (2)0.0829 (3)0.4273 (2)0.0407 (5)
H70.31050.17470.39120.049*
C80.4371 (2)0.1867 (2)0.3007 (2)0.0382 (5)
H30.412 (2)0.0446 (19)0.301 (2)0.080*
H4B0.394 (3)0.312 (3)0.4146 (19)0.080*
H4A0.450 (2)0.4093 (18)0.346 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1005 (6)0.0371 (4)0.0800 (5)0.0034 (3)0.0541 (4)0.0020 (3)
N10.0526 (13)0.0621 (15)0.0564 (14)0.0075 (11)0.0311 (11)0.0029 (11)
N20.0496 (11)0.0372 (11)0.0447 (12)0.0008 (9)0.0303 (9)0.0032 (9)
N30.0569 (12)0.0283 (10)0.0533 (13)0.0023 (9)0.0385 (10)0.0013 (9)
N40.0835 (16)0.0338 (11)0.0712 (15)0.0090 (11)0.0578 (13)0.0081 (11)
O10.0868 (14)0.0503 (12)0.0874 (15)0.0001 (10)0.0521 (12)0.0058 (11)
O20.143 (2)0.0869 (16)0.1135 (18)0.0285 (15)0.1077 (17)0.0100 (14)
S10.0628 (4)0.0345 (3)0.0580 (4)0.0034 (3)0.0423 (3)0.0004 (3)
C10.0400 (12)0.0374 (13)0.0381 (13)0.0023 (10)0.0190 (11)0.0026 (10)
C20.0497 (14)0.0366 (12)0.0432 (14)0.0023 (10)0.0213 (11)0.0017 (10)
C30.0563 (15)0.0509 (15)0.0503 (15)0.0118 (12)0.0281 (13)0.0073 (12)
C40.0515 (15)0.0632 (17)0.0483 (15)0.0046 (13)0.0317 (12)0.0042 (13)
C50.0416 (13)0.0480 (14)0.0413 (14)0.0005 (11)0.0214 (11)0.0010 (11)
C60.0431 (13)0.0384 (13)0.0457 (14)0.0031 (10)0.0236 (11)0.0037 (10)
C70.0496 (14)0.0333 (12)0.0486 (14)0.0012 (10)0.0294 (12)0.0009 (11)
C80.0435 (13)0.0310 (12)0.0460 (14)0.0001 (10)0.0243 (11)0.0023 (10)
Geometric parameters (Å, º) top
Cl1—C21.735 (2)C1—C61.393 (3)
N1—O21.214 (3)C1—C21.396 (3)
N1—O11.214 (3)C1—C71.456 (3)
N1—C51.471 (3)C2—C31.386 (3)
N2—C71.277 (3)C3—C41.382 (4)
N2—N31.374 (2)C3—H3A0.9300
N3—C81.348 (3)C4—C51.378 (3)
N3—H30.899 (10)C4—H40.9300
N4—C81.322 (3)C5—C61.376 (3)
N4—H4B0.88 (3)C6—H60.9300
N4—H4A0.886 (10)C7—H70.9300
S1—C81.681 (2)
O2—N1—O1123.3 (2)C4—C3—H3A120.5
O2—N1—C5117.8 (2)C2—C3—H3A120.5
O1—N1—C5118.9 (2)C5—C4—C3118.6 (2)
C7—N2—N3116.36 (19)C5—C4—H4120.7
C8—N3—N2118.95 (18)C3—C4—H4120.7
C8—N3—H3121.7 (18)C6—C5—C4122.8 (2)
N2—N3—H3119.1 (18)C6—C5—N1118.5 (2)
C8—N4—H4B122.8 (17)C4—C5—N1118.6 (2)
C8—N4—H4A122.1 (17)C5—C6—C1119.5 (2)
H4B—N4—H4A115 (2)C5—C6—H6120.3
C6—C1—C2117.5 (2)C1—C6—H6120.3
C6—C1—C7120.4 (2)N2—C7—C1119.6 (2)
C2—C1—C7122.1 (2)N2—C7—H7120.2
C3—C2—C1122.6 (2)C1—C7—H7120.2
C3—C2—Cl1117.04 (19)N4—C8—N3116.9 (2)
C1—C2—Cl1120.40 (18)N4—C8—S1123.49 (17)
C4—C3—C2119.1 (2)N3—C8—S1119.59 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.89 (1)2.53 (1)3.408 (2)173 (2)
N3—H3···S1ii0.90 (1)2.46 (1)3.3266 (19)161 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7ClN4O2S
Mr258.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.611 (2), 8.439 (2), 12.016 (3)
β (°) 113.909 (2)
V3)1076.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.909, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
6657, 2344, 1573
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.02
No. of reflections2344
No. of parameters154
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.886 (10)2.527 (11)3.408 (2)173 (2)
N3—H3···S1ii0.899 (10)2.463 (13)3.3266 (19)161 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025–1028.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerrari, M. B., Capacchi, S., Pelosi, G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (1999). Inorg. Chim. Acta, 286, 134–141.  Google Scholar
First citationHao, Y.-M. (2010). Acta Cryst. E66, o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShanmuga Sundara Raj, S., Fun, H.-K., Zhang, X.-J., Tian, Y.-P., Xie, F.-X. & Ma, J.-L. (2000). Acta Cryst. C56, 1238–1239.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds