organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­methyl-N-[(E)-3-nitro­benzyl­­idene]-1,2-oxazol-5-amine

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 September 2010; accepted 6 September 2010; online 11 September 2010)

In the title compound, C12H11N3O3, the dihedral angle between the 3-nitro­benzaldehyde and 5-amino-3,4-dimethyl-1,2-oxazole moieties is 2.46 (12)°. The mol­ecule is close to planar, the r.m.s. deviation for the non-H atoms being 0.028 Å. The packing only features van der Waals inter­actions between the mol­ecules.

Related literature

For background and related crystal structures, see: Asiri et al. (2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2127.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2077.],c[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, o2046.],d[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, o2019.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O3

  • Mr = 245.24

  • Monoclinic, P 21 /c

  • a = 12.602 (2) Å

  • b = 3.9267 (6) Å

  • c = 23.366 (4) Å

  • β = 94.791 (9)°

  • V = 1152.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.22 × 0.08 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.992, Tmax = 0.995

  • 8616 measured reflections

  • 2046 independent reflections

  • 846 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.161

  • S = 0.99

  • 2046 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported in continuation of our synthetic and structural studies of various Schiff bases of 5-amino-3,4-dimethylisoxazole (Asiri et al., 2010a, b, c, d).

In (I), the 3-nitrobenzaldehyde moiety A (C1—C7/N1/O1/O2) and 5-amino-3,4-dimethylisoxazole moiety B (N2/C8—C12/N3/O3) are planar with r. m. s. deviation of 0.0124 and 0.0099 Å, respectively. The dihedral angle between A/B is 2.46 (12)°. All the heavy atoms (C1—C12/N1—N3/O1—O3) consituate plane with r. m. s. deviation of 0.0276 Å. In this plane, the methyl atom C12 deviates at the maximum with 0.0721 (33) Å. The title compound essentially consists of monomers. There exists no π···π interactions in the crystal.

Related literature top

For background and related crystal structures, see: Asiri et al. (2010a,b,c,d).

Experimental top

A mixture of 4-nitrobenzaldehyde (0.33 g, 2.2 mmol) and 5-amino-3,4-dimethylisoxazole (0.24 g, 2.2 mmol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with ethanol to give long thin needles of (I).

Yield: 56.45%; m.p. 463–464 K.

IR (KBr) \vmax cm-1: 3069 (C—H for CH3), 2922 (C—H), 1568 (CC), 1523 (CN), 1162 (C—N).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
3,4-Dimethyl-N-[(E)-3-nitrobenzylidene]-1,2-oxazol-5-amine top
Crystal data top
C12H11N3O3F(000) = 512
Mr = 245.24Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 846 reflections
a = 12.602 (2) Åθ = 2.3–25.0°
b = 3.9267 (6) ŵ = 0.11 mm1
c = 23.366 (4) ÅT = 296 K
β = 94.791 (9)°Needle, colorless
V = 1152.3 (3) Å30.22 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2046 independent reflections
Radiation source: fine-focus sealed tube846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 8.20 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 44
Tmin = 0.992, Tmax = 0.995l = 2727
8616 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H11N3O3V = 1152.3 (3) Å3
Mr = 245.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.602 (2) ŵ = 0.11 mm1
b = 3.9267 (6) ÅT = 296 K
c = 23.366 (4) Å0.22 × 0.08 × 0.06 mm
β = 94.791 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2046 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
846 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.995Rint = 0.097
8616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 0.99Δρmax = 0.16 e Å3
2046 reflectionsΔρmin = 0.19 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0661 (2)0.9618 (9)0.11316 (16)0.0932 (16)
O20.0217 (3)0.7756 (9)0.19373 (16)0.1103 (19)
O30.5961 (2)0.7628 (6)0.02581 (12)0.0630 (11)
N10.0873 (3)0.8153 (10)0.15894 (19)0.0708 (17)
N20.5490 (3)0.5694 (8)0.11691 (13)0.0523 (12)
N30.6882 (3)0.7702 (8)0.00509 (15)0.0660 (17)
C10.3736 (3)0.6218 (9)0.14659 (17)0.0475 (17)
C20.3985 (3)0.4605 (10)0.19866 (18)0.0579 (17)
C30.3218 (4)0.4146 (10)0.23763 (18)0.0629 (17)
C40.2194 (4)0.5255 (10)0.22380 (19)0.0618 (17)
C50.1954 (3)0.6856 (10)0.17248 (19)0.0534 (17)
C60.2697 (3)0.7379 (9)0.13294 (17)0.0511 (17)
C70.4530 (3)0.6720 (9)0.10518 (17)0.0527 (17)
C80.6232 (3)0.6142 (10)0.07766 (17)0.0521 (17)
C90.7266 (3)0.5238 (9)0.08165 (17)0.0485 (17)
C100.7629 (3)0.6275 (9)0.02938 (19)0.0513 (17)
C110.8723 (3)0.5881 (10)0.00968 (19)0.0727 (19)
C120.7889 (3)0.3614 (10)0.13104 (17)0.0672 (17)
H20.467430.381590.207780.0695*
H30.339740.309520.272770.0758*
H40.167130.491950.249080.0742*
H60.250950.847330.098260.0611*
H70.433860.778460.070290.0629*
H11A0.873210.674770.028690.1088*
H11B0.891530.351460.010240.1088*
H11C0.922350.712790.034860.1088*
H12A0.827730.532900.153330.1006*
H12B0.837890.200170.117120.1006*
H12C0.741370.246270.154600.1006*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.064 (2)0.141 (3)0.074 (3)0.0185 (19)0.003 (2)0.011 (2)
O20.066 (3)0.170 (4)0.100 (3)0.011 (2)0.037 (2)0.017 (2)
O30.0537 (19)0.084 (2)0.051 (2)0.0055 (14)0.0022 (15)0.0092 (15)
N10.057 (3)0.097 (3)0.059 (3)0.002 (2)0.009 (2)0.011 (2)
N20.048 (2)0.061 (2)0.048 (2)0.0018 (17)0.0047 (18)0.0012 (16)
N30.065 (3)0.080 (3)0.054 (3)0.001 (2)0.011 (2)0.0068 (19)
C10.050 (3)0.047 (3)0.045 (3)0.0016 (19)0.001 (2)0.005 (2)
C20.052 (3)0.068 (3)0.053 (3)0.001 (2)0.000 (2)0.010 (2)
C30.073 (3)0.071 (3)0.045 (3)0.003 (2)0.006 (3)0.003 (2)
C40.065 (3)0.073 (3)0.049 (3)0.007 (2)0.014 (2)0.010 (2)
C50.046 (3)0.059 (3)0.054 (3)0.006 (2)0.002 (2)0.013 (2)
C60.050 (3)0.058 (3)0.045 (3)0.0016 (19)0.003 (2)0.005 (2)
C70.049 (3)0.065 (3)0.044 (3)0.001 (2)0.004 (2)0.000 (2)
C80.056 (3)0.056 (3)0.043 (3)0.001 (2)0.003 (2)0.003 (2)
C90.042 (3)0.055 (3)0.048 (3)0.001 (2)0.001 (2)0.003 (2)
C100.049 (3)0.053 (3)0.052 (3)0.001 (2)0.004 (2)0.005 (2)
C110.063 (3)0.079 (3)0.079 (4)0.000 (2)0.024 (3)0.000 (3)
C120.064 (3)0.078 (3)0.059 (3)0.010 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—N11.224 (6)C8—C91.346 (5)
O2—N11.217 (6)C9—C101.400 (6)
O3—N31.418 (5)C9—C121.484 (5)
O3—C81.362 (5)C10—C111.498 (5)
N1—C51.464 (5)C2—H20.9300
N2—C71.283 (5)C3—H30.9300
N2—C81.375 (5)C4—H40.9300
N3—C101.312 (5)C6—H60.9300
C1—C21.384 (6)C7—H70.9300
C1—C61.398 (5)C11—H11A0.9600
C1—C71.462 (5)C11—H11B0.9600
C2—C31.394 (6)C11—H11C0.9600
C3—C41.375 (7)C12—H12A0.9600
C4—C51.365 (6)C12—H12B0.9600
C5—C61.385 (6)C12—H12C0.9600
N3—O3—C8107.9 (3)N3—C10—C11119.2 (4)
O1—N1—O2122.2 (4)C9—C10—C11127.9 (4)
O1—N1—C5118.9 (4)C1—C2—H2120.00
O2—N1—C5118.9 (4)C3—C2—H2120.00
C7—N2—C8120.0 (3)C2—C3—H3120.00
O3—N3—C10104.8 (3)C4—C3—H3120.00
C2—C1—C6119.3 (4)C3—C4—H4120.00
C2—C1—C7121.7 (3)C5—C4—H4120.00
C6—C1—C7119.0 (3)C1—C6—H6121.00
C1—C2—C3121.0 (4)C5—C6—H6121.00
C2—C3—C4119.6 (4)N2—C7—H7120.00
C3—C4—C5119.2 (4)C1—C7—H7120.00
N1—C5—C4118.9 (4)C10—C11—H11A109.00
N1—C5—C6118.2 (4)C10—C11—H11B109.00
C4—C5—C6122.8 (4)C10—C11—H11C109.00
C1—C6—C5118.2 (4)H11A—C11—H11B109.00
N2—C7—C1120.1 (3)H11A—C11—H11C109.00
O3—C8—N2120.9 (3)H11B—C11—H11C109.00
O3—C8—C9110.1 (3)C9—C12—H12A109.00
N2—C8—C9128.9 (4)C9—C12—H12B109.00
C8—C9—C10104.4 (3)C9—C12—H12C109.00
C8—C9—C12127.8 (4)H12A—C12—H12B109.00
C10—C9—C12127.8 (3)H12A—C12—H12C109.00
N3—C10—C9112.9 (3)H12B—C12—H12C109.00
C8—O3—N3—C100.2 (4)C7—C1—C6—C5179.5 (3)
N3—O3—C8—C90.5 (4)C2—C1—C7—N20.9 (6)
N3—O3—C8—N2179.4 (3)C1—C2—C3—C41.2 (6)
O2—N1—C5—C40.3 (6)C2—C3—C4—C51.4 (6)
O2—N1—C5—C6178.9 (4)C3—C4—C5—N1177.6 (4)
O1—N1—C5—C4179.3 (4)C3—C4—C5—C60.9 (6)
O1—N1—C5—C60.7 (6)N1—C5—C6—C1178.4 (3)
C7—N2—C8—C9179.6 (4)C4—C5—C6—C10.2 (6)
C8—N2—C7—C1179.4 (3)O3—C8—C9—C100.5 (4)
C7—N2—C8—O30.9 (5)N2—C8—C9—C122.5 (7)
O3—N3—C10—C11179.1 (3)O3—C8—C9—C12178.7 (3)
O3—N3—C10—C90.1 (4)N2—C8—C9—C10179.4 (4)
C6—C1—C2—C30.4 (6)C8—C9—C10—N30.4 (4)
C7—C1—C2—C3180.0 (4)C12—C9—C10—C112.5 (6)
C6—C1—C7—N2179.6 (3)C8—C9—C10—C11179.3 (4)
C2—C1—C6—C50.1 (5)C12—C9—C10—N3178.6 (4)

Experimental details

Crystal data
Chemical formulaC12H11N3O3
Mr245.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.602 (2), 3.9267 (6), 23.366 (4)
β (°) 94.791 (9)
V3)1152.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.08 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.992, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8616, 2046, 846
Rint0.097
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.161, 0.99
No. of reflections2046
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work via grant No. (3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, o2019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds