metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Di­methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]propane-1,3-di­amine}bis­(thio­cyanato-κN)­copper(II)

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China
*Correspondence e-mail: pdsuchemistry@163.com

(Received 10 September 2010; accepted 10 September 2010; online 18 September 2010)

In the title complex, [Cu(NCS)2(C12H19N3)], the CuII atom is five-coordinated in a square-pyramidal geometry defined by one pyridine N, one imine N, and one amine N atom of the tridentate Schiff base ligand and two N-bonded thio­cyanate ions (one of the latter occupying the apical site). The three bridging C atoms and the two terminal C atoms of the Schiff base are disordered over two sets of sites, with occupancies of 0.465 (2) and 0.535 (2).

Related literature

For a related structure and background to Schiff bases, see: Xue et al. (2010[Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172-m1173.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C12H19N3)]

  • Mr = 385.00

  • Monoclinic, P 21 /c

  • a = 13.723 (2) Å

  • b = 7.2380 (12) Å

  • c = 18.237 (3) Å

  • β = 103.559 (2)°

  • V = 1760.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.21 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.727, Tmax = 0.746

  • 13886 measured reflections

  • 3816 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.04

  • 3816 reflections

  • 237 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N5 1.955 (3)
Cu1—N2 2.013 (3)
Cu1—N1 2.047 (3)
Cu1—N3 2.078 (3)
Cu1—N4 2.153 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported a copper(II) complex with a Schiff base ligand (Xue et al., 2010). In this paper, a new thiocyanato-coordinated mononuclear copper(II) complex with the Schiff base N,N-dimethyl-N'-(1-pyridin-2-ylethylidene)propane-1,3-diamine, is reported.

The Cu atom in the complex, Fig. 1, is five-coordinate in a square pyramidal geometry, with one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with another thiocyanate N atom occupying the apical position. The Cu atom displaced 0.306 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

Related literature top

For a related structure and background to Schiff bases, see: Xue et al. (2010).

Experimental top

2-Acetylpyridine (121 mg, 1.0 mmol), N,Ndimethylpropane-1,3-diamine (102 mg, 1.0 mmol), ammonium thiocyanate (76 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue blocks of (I).

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl). The three briding C atoms and the two terminal C atoms of the Schiff base ligand are disordered over two sites, with occupancies of 0.465 (2) and 0.535 (2).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with 30% probability displacement ellipsoids.
{N,N-Dimethyl-N'-[1-(2-pyridyl)ethylidene]propane-1,3- diamine}bis(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(NCS)2(C12H19N3)]F(000) = 796
Mr = 385.00Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2747 reflections
a = 13.723 (2) Åθ = 2.3–24.5°
b = 7.2380 (12) ŵ = 1.48 mm1
c = 18.237 (3) ÅT = 298 K
β = 103.559 (2)°Block, blue
V = 1760.9 (5) Å30.23 × 0.21 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3816 independent reflections
Radiation source: fine-focus sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.727, Tmax = 0.746k = 99
13886 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.6842P]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.57 e Å3
16 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(NCS)2(C12H19N3)]V = 1760.9 (5) Å3
Mr = 385.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.723 (2) ŵ = 1.48 mm1
b = 7.2380 (12) ÅT = 298 K
c = 18.237 (3) Å0.23 × 0.21 × 0.21 mm
β = 103.559 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2698 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.746Rint = 0.041
13886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04216 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
3816 reflectionsΔρmin = 0.47 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24814 (3)0.82783 (5)0.39009 (2)0.04378 (15)
N10.3853 (2)0.8651 (4)0.36614 (15)0.0459 (7)
N20.2846 (2)1.0789 (4)0.43585 (14)0.0457 (6)
N40.2763 (2)0.7053 (4)0.50065 (18)0.0594 (8)
N50.2289 (2)0.5969 (5)0.33292 (18)0.0624 (8)
S10.2253 (2)0.6298 (3)0.63328 (10)0.1725 (10)
S20.23557 (7)0.28351 (14)0.24673 (6)0.0611 (3)
C10.4337 (3)0.7542 (6)0.3285 (2)0.0647 (10)
H10.40280.64460.30900.078*
C20.5270 (3)0.7936 (7)0.3170 (2)0.0752 (13)
H20.55840.71240.29040.090*
C30.5724 (3)0.9539 (7)0.3454 (2)0.0716 (12)
H30.63580.98350.33880.086*
C40.5236 (3)1.0714 (6)0.3839 (2)0.0601 (10)
H40.55331.18210.40320.072*
C50.4300 (2)1.0238 (5)0.39356 (17)0.0443 (7)
C60.3702 (2)1.1400 (4)0.43399 (18)0.0452 (8)
C70.4155 (3)1.3171 (5)0.4690 (2)0.0701 (12)
H7A0.40901.41040.43070.105*
H7B0.48511.29790.49210.105*
H7C0.38121.35630.50650.105*
N30.0939 (2)0.8665 (4)0.36804 (17)0.0606 (8)0.465 (11)
C80.2202 (3)1.1843 (5)0.4750 (2)0.0684 (11)0.465 (11)
H8A0.21161.30770.45380.082*0.465 (11)
H8B0.25491.19610.52760.082*0.465 (11)
C90.1197 (6)1.1045 (16)0.4713 (5)0.062 (3)0.465 (11)
H9A0.07971.19120.49240.074*0.465 (11)
H9B0.12630.99180.50090.074*0.465 (11)
C100.0677 (7)1.0625 (13)0.3896 (5)0.056 (3)0.465 (11)
H10A0.08861.15170.35660.067*0.465 (11)
H10B0.00431.07310.38300.067*0.465 (11)
C110.053 (3)0.696 (4)0.396 (2)0.092 (10)0.465 (11)
H11A0.01850.70580.38730.138*0.465 (11)
H11B0.08120.68380.44960.138*0.465 (11)
H11C0.07050.59030.37050.138*0.465 (11)
C120.066 (3)0.888 (6)0.2842 (6)0.071 (8)0.465 (11)
H12A0.00530.90540.26780.107*0.465 (11)
H12B0.08490.77890.26110.107*0.465 (11)
H12C0.09980.99310.27000.107*0.465 (11)
N3'0.0939 (2)0.8665 (4)0.36804 (17)0.0606 (8)0.535 (11)
C8'0.2202 (3)1.1843 (5)0.4750 (2)0.0684 (11)0.535 (11)
H8'A0.24151.31240.48030.082*0.535 (11)
H8'B0.22521.13360.52500.082*0.535 (11)
C9'0.1099 (5)1.1713 (11)0.4277 (7)0.077 (3)0.535 (11)
H9'A0.07031.25950.44840.093*0.535 (11)
H9'B0.10911.21120.37680.093*0.535 (11)
C10'0.0573 (6)0.9862 (12)0.4224 (6)0.069 (3)0.535 (11)
H10C0.07110.92780.47170.082*0.535 (11)
H10D0.01451.00350.40550.082*0.535 (11)
C11'0.036 (2)0.703 (3)0.3837 (17)0.071 (5)0.535 (11)
H11D0.03460.73310.37200.106*0.535 (11)
H11E0.05690.67020.43600.106*0.535 (11)
H11F0.04670.60090.35310.106*0.535 (11)
C12'0.052 (3)0.896 (5)0.2860 (6)0.071 (7)0.535 (11)
H12D0.01970.91330.27700.106*0.535 (11)
H12E0.06530.79000.25840.106*0.535 (11)
H12F0.08151.00350.26970.106*0.535 (11)
C130.2546 (3)0.6730 (5)0.5551 (2)0.0572 (9)
C140.2316 (2)0.4674 (5)0.29685 (19)0.0481 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0369 (2)0.0457 (2)0.0496 (2)0.00511 (18)0.01183 (16)0.00953 (18)
N10.0412 (15)0.0515 (17)0.0463 (15)0.0058 (12)0.0131 (12)0.0059 (12)
N20.0448 (16)0.0426 (16)0.0496 (15)0.0014 (13)0.0109 (12)0.0037 (12)
N40.066 (2)0.057 (2)0.0533 (18)0.0049 (15)0.0097 (15)0.0003 (15)
N50.0559 (19)0.0598 (19)0.072 (2)0.0085 (16)0.0162 (16)0.0233 (17)
S10.264 (3)0.178 (2)0.1026 (12)0.0650 (18)0.0974 (15)0.0160 (12)
S20.0560 (6)0.0568 (6)0.0762 (6)0.0069 (4)0.0269 (5)0.0187 (5)
C10.055 (2)0.078 (3)0.064 (2)0.011 (2)0.0212 (19)0.025 (2)
C20.051 (2)0.107 (4)0.075 (3)0.005 (2)0.031 (2)0.023 (2)
C30.042 (2)0.106 (4)0.071 (3)0.012 (2)0.0205 (19)0.002 (2)
C40.045 (2)0.069 (3)0.064 (2)0.0139 (19)0.0068 (17)0.003 (2)
C50.0366 (17)0.0494 (19)0.0435 (17)0.0030 (15)0.0024 (13)0.0060 (15)
C60.0428 (19)0.0389 (18)0.0486 (18)0.0020 (14)0.0004 (14)0.0025 (14)
C70.062 (2)0.046 (2)0.093 (3)0.0065 (19)0.001 (2)0.012 (2)
N30.0378 (16)0.073 (2)0.069 (2)0.0027 (15)0.0079 (14)0.0122 (17)
C80.069 (3)0.059 (2)0.079 (3)0.009 (2)0.023 (2)0.021 (2)
C90.062 (6)0.061 (7)0.078 (7)0.003 (5)0.047 (5)0.009 (5)
C100.034 (5)0.066 (7)0.072 (6)0.017 (4)0.019 (4)0.007 (5)
C110.019 (8)0.155 (18)0.096 (19)0.026 (9)0.003 (9)0.037 (10)
C120.032 (9)0.105 (17)0.065 (12)0.007 (8)0.012 (8)0.027 (10)
N3'0.0378 (16)0.073 (2)0.069 (2)0.0027 (15)0.0079 (14)0.0122 (17)
C8'0.069 (3)0.059 (2)0.079 (3)0.009 (2)0.023 (2)0.021 (2)
C9'0.067 (6)0.058 (6)0.126 (10)0.003 (4)0.061 (7)0.008 (6)
C10'0.058 (5)0.074 (6)0.083 (7)0.005 (4)0.034 (5)0.001 (5)
C11'0.038 (12)0.120 (12)0.053 (6)0.007 (6)0.007 (8)0.019 (6)
C12'0.050 (13)0.061 (10)0.100 (15)0.006 (7)0.013 (8)0.010 (9)
C130.066 (2)0.043 (2)0.061 (2)0.0099 (18)0.0108 (19)0.0024 (18)
C140.0348 (17)0.054 (2)0.0550 (19)0.0070 (15)0.0103 (14)0.0051 (17)
Geometric parameters (Å, º) top
Cu1—N51.955 (3)N3—C111.494 (9)
Cu1—N22.013 (3)N3—C101.537 (7)
Cu1—N12.047 (3)C8—C91.483 (7)
Cu1—N32.078 (3)C8—H8A0.9700
Cu1—N42.153 (3)C8—H8B0.9700
N1—C11.331 (4)C9—C101.525 (9)
N1—C51.343 (4)C9—H9A0.9700
N2—C61.264 (4)C9—H9B0.9700
N2—C81.472 (4)C10—H10A0.9700
N4—C131.126 (4)C10—H10B0.9700
N5—C141.151 (4)C11—H11A0.9600
S1—C131.600 (4)C11—H11B0.9600
S2—C141.622 (4)C11—H11C0.9600
C1—C21.375 (5)C12—H12A0.9600
C1—H10.9300C12—H12B0.9600
C2—C31.361 (6)C12—H12C0.9600
C2—H20.9300C9'—C10'1.514 (9)
C3—C41.373 (5)C9'—H9'A0.9700
C3—H30.9300C9'—H9'B0.9700
C4—C51.380 (5)C10'—H10C0.9700
C4—H40.9300C10'—H10D0.9700
C5—C61.486 (5)C11'—H11D0.9600
C6—C71.500 (4)C11'—H11E0.9600
C7—H7A0.9600C11'—H11F0.9600
C7—H7B0.9600C12'—H12D0.9600
C7—H7C0.9600C12'—H12E0.9600
N3—C121.494 (9)C12'—H12F0.9600
N5—Cu1—N2169.17 (12)C11—N3—Cu1105.6 (16)
N5—Cu1—N190.84 (12)C10—N3—Cu1111.3 (4)
N2—Cu1—N179.51 (11)N2—C8—C9115.7 (4)
N5—Cu1—N390.46 (12)N2—C8—H8A108.3
N2—Cu1—N395.82 (11)C9—C8—H8A108.3
N1—Cu1—N3152.40 (12)N2—C8—H8B108.3
N5—Cu1—N496.85 (13)C9—C8—H8B108.3
N2—Cu1—N490.64 (11)H8A—C8—H8B107.4
N1—Cu1—N4106.39 (12)C8—C9—C10109.8 (7)
N3—Cu1—N4100.82 (12)C8—C9—H9A109.7
C1—N1—C5117.9 (3)C10—C9—H9A109.7
C1—N1—Cu1128.7 (3)C8—C9—H9B109.7
C5—N1—Cu1113.4 (2)C10—C9—H9B109.7
C6—N2—C8119.9 (3)H9A—C9—H9B108.2
C6—N2—Cu1116.6 (2)C9—C10—N3110.5 (7)
C8—N2—Cu1123.3 (2)C9—C10—H10A109.5
C13—N4—Cu1152.2 (3)N3—C10—H10A109.5
C14—N5—Cu1169.4 (3)C9—C10—H10B109.5
N1—C1—C2123.3 (4)N3—C10—H10B109.5
N1—C1—H1118.4H10A—C10—H10B108.1
C2—C1—H1118.4N3—C11—H11A109.5
C3—C2—C1118.6 (4)N3—C11—H11B109.5
C3—C2—H2120.7H11A—C11—H11B109.5
C1—C2—H2120.7N3—C11—H11C109.5
C2—C3—C4119.2 (4)H11A—C11—H11C109.5
C2—C3—H3120.4H11B—C11—H11C109.5
C4—C3—H3120.4N3—C12—H12A109.5
C3—C4—C5119.4 (4)N3—C12—H12B109.5
C3—C4—H4120.3H12A—C12—H12B109.5
C5—C4—H4120.3N3—C12—H12C109.5
N1—C5—C4121.6 (3)H12A—C12—H12C109.5
N1—C5—C6114.3 (3)H12B—C12—H12C109.5
C4—C5—C6124.1 (3)C10'—C9'—H9'A107.7
N2—C6—C5116.1 (3)C10'—C9'—H9'B107.7
N2—C6—C7125.6 (3)H9'A—C9'—H9'B107.1
C5—C6—C7118.3 (3)C9'—C10'—H10C109.9
C6—C7—H7A109.5C9'—C10'—H10D109.9
C6—C7—H7B109.5H10C—C10'—H10D108.3
H7A—C7—H7B109.5H11D—C11'—H11E109.5
C6—C7—H7C109.5H11D—C11'—H11F109.5
H7A—C7—H7C109.5H11E—C11'—H11F109.5
H7B—C7—H7C109.5H12D—C12'—H12E109.5
C12—N3—C11114 (2)H12D—C12'—H12F109.5
C12—N3—C1098.4 (18)H12E—C12'—H12F109.5
C11—N3—C10122.9 (19)N4—C13—S1178.9 (4)
C12—N3—Cu1102.7 (18)N5—C14—S2179.4 (3)

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C12H19N3)]
Mr385.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.723 (2), 7.2380 (12), 18.237 (3)
β (°) 103.559 (2)
V3)1760.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.727, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13886, 3816, 2698
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.04
No. of reflections3816
No. of parameters237
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N51.955 (3)Cu1—N32.078 (3)
Cu1—N22.013 (3)Cu1—N42.153 (3)
Cu1—N12.047 (3)
 

Acknowledgements

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010). Acta Cryst. E66, m1172–m1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds