organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-{[5-(4-chloro­phen­yl)-1-(4-fluoro­phen­yl)-1H-pyrazol-3-yl]carbon­yl}piperazine-1-carboxyl­ate

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 September 2010; accepted 27 September 2010; online 30 September 2010)

In the title pyrazole derivative, C25H26ClFN4O3, both benzene rings are twisted out of the plane through the pyrazole ring, with dihedral angles of 67.62 (10) and 27.63 (10)° for the fluoro- and chloro-substituted rings, respectively. The dihedral angle between the two benzene rings is 64.54 (9)°. The piperazine ring (with a chair conformation) is linked to the pyrazole ring via a carbonyl spacer and is orientated to lie to one side of the pyrazole plane. In addition to an intra­molecular C—H⋯N contact, there are inter­molecular C—H⋯O inter­actions, which generate a supra­molecular chain with an undulating topology along the c axis that is sustained by alternating centrosymmetric ten-membered {⋯HCNCO}2 and {⋯HC3O}2 synthons.

Related literature

For the pharmacological potential of pyrazol derivatives, see: Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.]). For the synthesis, see: Ragavan et al. (2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For a related structure, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26ClFN4O3

  • Mr = 484.95

  • Triclinic, [P \overline 1]

  • a = 6.0568 (5) Å

  • b = 12.0047 (10) Å

  • c = 16.2615 (13) Å

  • α = 88.852 (1)°

  • β = 81.206 (1)°

  • γ = 87.644 (1)°

  • V = 1167.37 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: analytical (FACES; Bruker, 2009[Bruker (2009). FACES, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.980

  • 11213 measured reflections

  • 5318 independent reflections

  • 4351 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.145

  • S = 1.06

  • 5318 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17a⋯N2 0.99 2.24 2.950 (2) 128
C14—H14⋯O1i 0.95 2.28 3.192 (2) 161
C18—H18a⋯O2ii 0.99 2.52 3.223 (2) 128
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). FACES, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). FACES, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The anti-bacterial and anti-fungal activities of the azoles are well known and some derivatives are used clinically as anti-microbial agents. However, the emergence of azole-resistant strains of microbes requires the development of new anti-microbial compounds. Pyrazole forms an important class of heterocyclic compounds and many pyrazole derivatives are reported to display a broad spectrum of biological activities, such as anti-inflammatory, anti-fungal, herbicidal, anti-tumour, cytotoxic, and anti-viral activities. Since the high electronegativity of halogens (particularly chlorine and fluorine) in aromatic rings of drug molecules plays an important role in enhancing biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryl rings of 1,5-diaryl pyrazoles. As part of our on-going research aimed at the synthesis of new anti-microbial compounds based on pyrazole (Ragavan et al., 2009, 2010) and reflecting our interest in pyrazole structures (Samshuddin et al., 2010), herein we report the crystallographic characterization of a novel pyrazole derivative, (I).

The pyrazole ring in (I), Fig. 1, is planar (r.m.s. deviation = 0.003 Å) and is connected to two halo-substituted benzene rings. Whereas the chloro-substituted ring is slightly twisted out of the plane of the pyrazoyl ring [dihedral angle = 27.63 (10) °], the fluoro-substituted ring is almost orthogonal [dihedral angle = 67.62 (10) °]; the dihedral angle between the two benzene rings = 64.54 (9) °. The ester derivatized piperazine ring (with a chair conformation) is linked to the pyrazoyl ring via a carbonyl spacer [the N2—C15—C16—N3 torsion angle = 13.6 (3) °] and is orientated to lie to one side of the pyrazoyl plane. Finally, the ester group is co-planar with the C18—N4—C19 plane as seen in the C18—N4—C21—O2 torsion angle of -0.3 (3) °.

In addition to an intramolecular C—H···N bond, there are two significant intermolecular C—H···O contacts of note, Table 1. The latter lead to the formation of an undulating supramolecular chain along the c axis comprising alternating centrosymmetric 10-membered {···HCNCO}2 and {···HC3O}2 synthons, Fig. 2. Chains pack in the ac plane and these stack along the b axis, Fig. 3.

Related literature top

For the pharmacological potential of pyrazol derivatives, see: Ragavan et al. (2009). For the synthesis, see: Ragavan et al. (2010). For a related structure, see: Samshuddin et al. (2010).

Experimental top

The compound was synthesized by the literature method (Ragavan et al., 2010). Colourless blocks of (I) were obtained by recrystallization from absolute ethanol; m.pt. 356.1–357.2 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. (010) and (001).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chains aligned along the c axis in (I) mediated by C—H···O interactions (orange dashed lines).
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the a axis in (I) showing the stacking of layers along the b direction. The C–H···O contacts are shown as orange dashed lines.
tert-Butyl 4-{[5-(4-chlorophenyl)-1-(4-fluorophenyl)- 1H-pyrazol-3-yl]carbonyl}piperazine-1-carboxylate top
Crystal data top
C25H26ClFN4O3Z = 2
Mr = 484.95F(000) = 508
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0568 (5) ÅCell parameters from 3796 reflections
b = 12.0047 (10) Åθ = 3.0–30.6°
c = 16.2615 (13) ŵ = 0.21 mm1
α = 88.852 (1)°T = 100 K
β = 81.206 (1)°Block, colourless
γ = 87.644 (1)°0.35 × 0.10 × 0.10 mm
V = 1167.37 (17) Å3
Data collection top
Bruker SMART APEX
diffractometer
5318 independent reflections
Radiation source: fine-focus sealed tube4351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 27.5°, θmin = 2.1°
Absorption correction: analytical
(FACES; Bruker, 2009)
h = 77
Tmin = 0.931, Tmax = 0.980k = 1515
11213 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0829P)2 + 0.4102P]
where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C25H26ClFN4O3γ = 87.644 (1)°
Mr = 484.95V = 1167.37 (17) Å3
Triclinic, P1Z = 2
a = 6.0568 (5) ÅMo Kα radiation
b = 12.0047 (10) ŵ = 0.21 mm1
c = 16.2615 (13) ÅT = 100 K
α = 88.852 (1)°0.35 × 0.10 × 0.10 mm
β = 81.206 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5318 independent reflections
Absorption correction: analytical
(FACES; Bruker, 2009)
4351 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.980Rint = 0.030
11213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
5318 reflectionsΔρmin = 0.39 e Å3
310 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54699 (8)0.35562 (4)0.36749 (3)0.02774 (15)
F10.3361 (2)0.60200 (11)0.83637 (8)0.0351 (3)
O10.6767 (2)0.00368 (11)0.59753 (8)0.0216 (3)
O20.6127 (2)0.13676 (12)1.00046 (8)0.0223 (3)
O30.9285 (2)0.21367 (11)0.92542 (8)0.0186 (3)
N10.1504 (2)0.26137 (12)0.66173 (9)0.0155 (3)
N20.3142 (2)0.20929 (13)0.69823 (10)0.0167 (3)
N30.6639 (2)0.04516 (13)0.73200 (9)0.0150 (3)
N40.6836 (3)0.11496 (14)0.86022 (10)0.0202 (3)
C10.0220 (3)0.35009 (14)0.70660 (10)0.0148 (3)
C20.1251 (3)0.44859 (15)0.71731 (11)0.0174 (4)
H20.27780.45720.69480.021*
C30.0030 (3)0.53487 (16)0.76141 (12)0.0225 (4)
H30.06990.60330.76920.027*
C40.2166 (3)0.51834 (17)0.79337 (12)0.0226 (4)
C50.3210 (3)0.42072 (17)0.78344 (12)0.0213 (4)
H50.47320.41220.80670.026*
C60.2004 (3)0.33534 (16)0.73909 (11)0.0183 (4)
H60.26900.26750.73100.022*
C70.0359 (3)0.25317 (15)0.53333 (11)0.0154 (4)
C80.1139 (3)0.36381 (15)0.52973 (11)0.0180 (4)
H80.06180.41780.56340.022*
C90.2670 (3)0.39586 (16)0.47737 (12)0.0199 (4)
H90.31810.47150.47470.024*
C100.3444 (3)0.31675 (16)0.42920 (11)0.0183 (4)
C110.2662 (3)0.20696 (16)0.43007 (12)0.0212 (4)
H110.31830.15350.39600.025*
C120.1106 (3)0.17607 (16)0.48145 (11)0.0188 (4)
H120.05360.10110.48140.023*
C130.1254 (3)0.21355 (14)0.58746 (11)0.0147 (3)
C140.2801 (3)0.12616 (15)0.57692 (11)0.0166 (4)
H140.30600.07570.53190.020*
C150.3920 (3)0.12677 (14)0.64627 (11)0.0150 (3)
C160.5851 (3)0.04965 (14)0.65783 (11)0.0149 (3)
C170.5275 (3)0.06276 (15)0.81360 (11)0.0168 (4)
H17A0.38560.10310.80660.020*
H17B0.60830.10870.84820.020*
C180.4778 (3)0.04902 (16)0.85671 (12)0.0194 (4)
H18A0.39880.03650.91390.023*
H18B0.37880.09040.82610.023*
C190.8221 (3)0.13264 (16)0.77930 (11)0.0190 (4)
H19A0.74290.17860.74410.023*
H19B0.96400.17260.78690.023*
C200.8709 (3)0.02034 (16)0.73720 (11)0.0180 (4)
H20A0.96640.02140.76900.022*
H20B0.95370.03200.68050.022*
C210.7328 (3)0.15410 (15)0.93439 (11)0.0165 (4)
C221.0055 (3)0.26720 (16)0.99898 (11)0.0191 (4)
C231.2187 (3)0.32815 (17)0.96125 (13)0.0250 (4)
H23A1.18420.38480.92310.038*
H23B1.29000.36421.00560.038*
H23C1.32050.27500.93060.038*
C240.8349 (3)0.34893 (18)1.03985 (14)0.0285 (5)
H24A0.79670.39890.99770.043*
H24B0.69980.30761.06550.043*
H24C0.89840.39281.08260.043*
C251.0532 (3)0.17857 (18)1.05902 (12)0.0236 (4)
H25A1.16300.12781.03010.035*
H25B1.11280.21461.10610.035*
H25C0.91450.13631.07950.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0254 (3)0.0297 (3)0.0319 (3)0.0024 (2)0.0172 (2)0.0069 (2)
F10.0380 (7)0.0319 (7)0.0337 (7)0.0169 (6)0.0032 (6)0.0137 (6)
O10.0250 (7)0.0246 (7)0.0150 (6)0.0078 (6)0.0038 (5)0.0048 (5)
O20.0206 (7)0.0289 (7)0.0157 (7)0.0027 (5)0.0011 (5)0.0025 (6)
O30.0179 (6)0.0224 (7)0.0154 (6)0.0036 (5)0.0036 (5)0.0020 (5)
N10.0174 (7)0.0153 (7)0.0146 (7)0.0012 (6)0.0054 (6)0.0004 (6)
N20.0159 (7)0.0155 (7)0.0192 (8)0.0029 (6)0.0057 (6)0.0019 (6)
N30.0150 (7)0.0178 (7)0.0117 (7)0.0035 (6)0.0017 (5)0.0005 (6)
N40.0211 (8)0.0230 (8)0.0148 (7)0.0073 (6)0.0001 (6)0.0034 (6)
C10.0170 (8)0.0150 (8)0.0123 (8)0.0057 (6)0.0037 (6)0.0006 (6)
C20.0180 (8)0.0198 (9)0.0147 (8)0.0006 (7)0.0031 (7)0.0003 (7)
C30.0299 (10)0.0169 (9)0.0221 (9)0.0012 (8)0.0090 (8)0.0037 (7)
C40.0274 (10)0.0216 (10)0.0185 (9)0.0107 (8)0.0049 (8)0.0044 (7)
C50.0173 (9)0.0276 (10)0.0182 (9)0.0042 (7)0.0018 (7)0.0011 (8)
C60.0197 (9)0.0179 (9)0.0178 (9)0.0005 (7)0.0043 (7)0.0002 (7)
C70.0141 (8)0.0172 (9)0.0145 (8)0.0000 (6)0.0015 (6)0.0024 (7)
C80.0202 (9)0.0176 (9)0.0166 (8)0.0001 (7)0.0040 (7)0.0003 (7)
C90.0211 (9)0.0193 (9)0.0194 (9)0.0007 (7)0.0043 (7)0.0024 (7)
C100.0150 (8)0.0245 (10)0.0157 (8)0.0009 (7)0.0048 (7)0.0044 (7)
C110.0236 (9)0.0215 (10)0.0203 (9)0.0035 (7)0.0083 (7)0.0007 (7)
C120.0226 (9)0.0185 (9)0.0153 (8)0.0005 (7)0.0037 (7)0.0007 (7)
C130.0161 (8)0.0147 (8)0.0134 (8)0.0002 (6)0.0023 (6)0.0005 (6)
C140.0185 (8)0.0160 (9)0.0155 (8)0.0010 (7)0.0033 (7)0.0002 (7)
C150.0160 (8)0.0127 (8)0.0162 (8)0.0017 (6)0.0028 (7)0.0000 (7)
C160.0159 (8)0.0139 (8)0.0148 (8)0.0005 (6)0.0019 (6)0.0005 (7)
C170.0184 (8)0.0183 (9)0.0126 (8)0.0042 (7)0.0004 (7)0.0016 (7)
C180.0167 (8)0.0233 (10)0.0169 (9)0.0040 (7)0.0008 (7)0.0039 (7)
C190.0210 (9)0.0204 (9)0.0141 (8)0.0087 (7)0.0006 (7)0.0021 (7)
C200.0142 (8)0.0243 (10)0.0152 (8)0.0043 (7)0.0024 (7)0.0013 (7)
C210.0160 (8)0.0139 (8)0.0199 (9)0.0003 (6)0.0039 (7)0.0001 (7)
C220.0194 (9)0.0220 (9)0.0167 (9)0.0008 (7)0.0061 (7)0.0041 (7)
C230.0226 (10)0.0252 (10)0.0276 (10)0.0059 (8)0.0070 (8)0.0011 (8)
C240.0262 (10)0.0279 (11)0.0319 (11)0.0026 (8)0.0070 (9)0.0127 (9)
C250.0196 (9)0.0335 (11)0.0175 (9)0.0018 (8)0.0030 (7)0.0020 (8)
Geometric parameters (Å, º) top
Cl1—C101.7439 (18)C9—H90.9500
F1—C41.355 (2)C10—C111.383 (3)
O1—C161.228 (2)C11—C121.387 (2)
O2—C211.218 (2)C11—H110.9500
O3—C211.349 (2)C12—H120.9500
O3—C221.475 (2)C13—C141.373 (2)
N1—N21.357 (2)C14—C151.402 (2)
N1—C131.379 (2)C14—H140.9500
N1—C11.436 (2)C15—C161.494 (2)
N2—C151.338 (2)C17—C181.521 (3)
N3—C161.363 (2)C17—H17A0.9900
N3—C201.465 (2)C17—H17B0.9900
N3—C171.466 (2)C18—H18A0.9900
N4—C211.356 (2)C18—H18B0.9900
N4—C181.457 (2)C19—C201.519 (3)
N4—C191.463 (2)C19—H19A0.9900
C1—C61.387 (3)C19—H19B0.9900
C1—C21.386 (2)C20—H20A0.9900
C2—C31.392 (3)C20—H20B0.9900
C2—H20.9500C22—C231.509 (3)
C3—C41.373 (3)C22—C241.523 (3)
C3—H30.9500C22—C251.524 (3)
C4—C51.378 (3)C23—H23A0.9800
C5—C61.382 (3)C23—H23B0.9800
C5—H50.9500C23—H23C0.9800
C6—H60.9500C24—H24A0.9800
C7—C81.394 (3)C24—H24B0.9800
C7—C121.398 (2)C24—H24C0.9800
C7—C131.471 (2)C25—H25A0.9800
C8—C91.390 (2)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
C9—C101.384 (3)
C21—O3—C22119.64 (14)C14—C15—C16124.05 (16)
N2—N1—C13112.50 (14)O1—C16—N3121.74 (16)
N2—N1—C1117.44 (14)O1—C16—C15118.02 (15)
C13—N1—C1129.91 (14)N3—C16—C15120.11 (15)
C15—N2—N1104.23 (14)N3—C17—C18109.81 (14)
C16—N3—C20118.19 (14)N3—C17—H17A109.7
C16—N3—C17125.08 (14)C18—C17—H17A109.7
C20—N3—C17112.72 (14)N3—C17—H17B109.7
C21—N4—C18120.10 (15)C18—C17—H17B109.7
C21—N4—C19125.57 (15)H17A—C17—H17B108.2
C18—N4—C19114.33 (14)N4—C18—C17110.80 (15)
C6—C1—C2121.44 (16)N4—C18—H18A109.5
C6—C1—N1119.72 (16)C17—C18—H18A109.5
C2—C1—N1118.84 (16)N4—C18—H18B109.5
C1—C2—C3119.41 (17)C17—C18—H18B109.5
C1—C2—H2120.3H18A—C18—H18B108.1
C3—C2—H2120.3N4—C19—C20109.09 (15)
C4—C3—C2118.21 (18)N4—C19—H19A109.9
C4—C3—H3120.9C20—C19—H19A109.9
C2—C3—H3120.9N4—C19—H19B109.9
F1—C4—C3118.44 (18)C20—C19—H19B109.9
F1—C4—C5118.57 (18)H19A—C19—H19B108.3
C3—C4—C5122.99 (18)N3—C20—C19111.15 (14)
C4—C5—C6118.84 (18)N3—C20—H20A109.4
C4—C5—H5120.6C19—C20—H20A109.4
C6—C5—H5120.6N3—C20—H20B109.4
C5—C6—C1119.12 (17)C19—C20—H20B109.4
C5—C6—H6120.4H20A—C20—H20B108.0
C1—C6—H6120.4O2—C21—O3124.94 (16)
C8—C7—C12118.48 (16)O2—C21—N4123.32 (17)
C8—C7—C13123.44 (16)O3—C21—N4111.74 (15)
C12—C7—C13118.06 (16)O3—C22—C23102.28 (14)
C9—C8—C7120.63 (17)O3—C22—C24110.27 (15)
C9—C8—H8119.7C23—C22—C24110.76 (17)
C7—C8—H8119.7O3—C22—C25109.96 (15)
C10—C9—C8119.52 (17)C23—C22—C25110.84 (16)
C10—C9—H9120.2C24—C22—C25112.29 (17)
C8—C9—H9120.2C22—C23—H23A109.5
C11—C10—C9121.10 (16)C22—C23—H23B109.5
C11—C10—Cl1119.40 (14)H23A—C23—H23B109.5
C9—C10—Cl1119.49 (14)C22—C23—H23C109.5
C10—C11—C12118.99 (17)H23A—C23—H23C109.5
C10—C11—H11120.5H23B—C23—H23C109.5
C12—C11—H11120.5C22—C24—H24A109.5
C11—C12—C7121.22 (17)C22—C24—H24B109.5
C11—C12—H12119.4H24A—C24—H24B109.5
C7—C12—H12119.4C22—C24—H24C109.5
C14—C13—N1105.62 (15)H24A—C24—H24C109.5
C14—C13—C7129.58 (16)H24B—C24—H24C109.5
N1—C13—C7124.79 (16)C22—C25—H25A109.5
C13—C14—C15105.83 (16)C22—C25—H25B109.5
C13—C14—H14127.1H25A—C25—H25B109.5
C15—C14—H14127.1C22—C25—H25C109.5
N2—C15—C14111.80 (15)H25A—C25—H25C109.5
N2—C15—C16124.02 (15)H25B—C25—H25C109.5
C13—N1—N2—C150.52 (19)N1—C13—C14—C150.33 (19)
C1—N1—N2—C15175.46 (15)C7—C13—C14—C15179.05 (17)
N2—N1—C1—C6110.40 (18)N1—N2—C15—C140.29 (19)
C13—N1—C1—C664.8 (2)N1—N2—C15—C16176.34 (16)
N2—N1—C1—C268.8 (2)C13—C14—C15—N20.0 (2)
C13—N1—C1—C2116.1 (2)C13—C14—C15—C16176.02 (16)
C6—C1—C2—C30.2 (3)C20—N3—C16—O13.6 (3)
N1—C1—C2—C3179.36 (16)C17—N3—C16—O1152.18 (17)
C1—C2—C3—C40.5 (3)C20—N3—C16—C15172.10 (15)
C2—C3—C4—F1179.97 (16)C17—N3—C16—C1532.1 (2)
C2—C3—C4—C50.3 (3)N2—C15—C16—O1162.19 (17)
F1—C4—C5—C6179.53 (16)C14—C15—C16—O113.4 (3)
C3—C4—C5—C60.3 (3)N2—C15—C16—N313.6 (3)
C4—C5—C6—C10.5 (3)C14—C15—C16—N3170.78 (16)
C2—C1—C6—C50.3 (3)C16—N3—C17—C18101.11 (19)
N1—C1—C6—C5178.85 (15)C20—N3—C17—C1855.79 (19)
C12—C7—C8—C91.7 (3)C21—N4—C18—C17124.53 (18)
C13—C7—C8—C9179.81 (17)C19—N4—C18—C1755.4 (2)
C7—C8—C9—C100.8 (3)N3—C17—C18—N453.54 (19)
C8—C9—C10—C112.3 (3)C21—N4—C19—C20124.91 (19)
C8—C9—C10—Cl1176.78 (14)C18—N4—C19—C2055.0 (2)
C9—C10—C11—C121.2 (3)C16—N3—C20—C19101.57 (18)
Cl1—C10—C11—C12177.88 (14)C17—N3—C20—C1957.07 (19)
C10—C11—C12—C71.4 (3)N4—C19—C20—N354.33 (19)
C8—C7—C12—C112.9 (3)C22—O3—C21—O22.6 (3)
C13—C7—C12—C11178.60 (17)C22—O3—C21—N4177.38 (15)
N2—N1—C13—C140.5 (2)C18—N4—C21—O20.3 (3)
C1—N1—C13—C14174.80 (17)C19—N4—C21—O2179.57 (17)
N2—N1—C13—C7178.88 (16)C18—N4—C21—O3179.63 (15)
C1—N1—C13—C75.8 (3)C19—N4—C21—O30.5 (3)
C8—C7—C13—C14151.42 (19)C21—O3—C22—C23177.25 (15)
C12—C7—C13—C1427.0 (3)C21—O3—C22—C2459.4 (2)
C8—C7—C13—N127.9 (3)C21—O3—C22—C2564.9 (2)
C12—C7—C13—N1153.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17a···N20.992.242.950 (2)128
C14—H14···O1i0.952.283.192 (2)161
C18—H18a···O2ii0.992.523.223 (2)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC25H26ClFN4O3
Mr484.95
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.0568 (5), 12.0047 (10), 16.2615 (13)
α, β, γ (°)88.852 (1), 81.206 (1), 87.644 (1)
V3)1167.37 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionAnalytical
(FACES; Bruker, 2009)
Tmin, Tmax0.931, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11213, 5318, 4351
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.145, 1.06
No. of reflections5318
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17a···N20.992.242.950 (2)128
C14—H14···O1i0.952.283.192 (2)161
C18—H18a···O2ii0.992.523.223 (2)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). FACES, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds