organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­acetic acid–3-{(E)-2-[(E)-pyridin-3-yl­methyl­­idene]hydrazin-1-ylidenemeth­yl}pyridine (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 September 2010; accepted 25 September 2010; online 30 September 2010)

The asymmetric unit of the title 1:2 adduct, C12H10N4·2C8H8O2, comprises a single mol­ecule of 2-phenyl­acetic acid and half a mol­ecule of 3-pyridine­aldazine; the latter is completed by crystallographic inversion symmetry. In the crystal, mol­ecules are connected into a three-component aggregate via O—H⋯N hydrogen bonds. As the carboxyl group lies above the plane through the benzene ring to which it is attached [C—C—C—C = 62.24 (17)°] and the 4-pyridine­aldazine mol­ecule is almost planar (r.m.s. deviation of the 16 non-H atoms = 0.027 Å), the overall shape of the aggregate is that of a flattened extended chair. Layers of these aggregates are connected by C—H⋯O and C—H⋯π inter­actions and stack parallel to (220).

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010a[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356.],b[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4·2C8H8O2

  • Mr = 482.53

  • Triclinic, [P \overline 1]

  • a = 5.511 (2) Å

  • b = 9.536 (4) Å

  • c = 12.434 (6) Å

  • α = 80.30 (2)°

  • β = 88.45 (3)°

  • γ = 76.46 (2)°

  • V = 626.1 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.52 × 0.32 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.832, Tmax = 1.000

  • 5606 measured reflections

  • 2849 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.130

  • S = 1.09

  • 2849 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1i 0.85 (2) 1.84 (2) 2.689 (2) 176 (2)
C8—H8⋯O2ii 0.95 2.47 3.398 (2) 166
C10—H10⋯O2iii 0.95 2.57 3.277 (2) 132
C10—H10⋯Cg1iii 0.95 2.89 3.627 (2) 135
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010a; Arman et al., 2010b), the co-crystallization of 2-phenylacetic acid and 3-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of 2-phenylacetic acid, Fig. 1, and half a molecule of 3-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate, Fig. 3. The 2-phenylacetic acid molecule is non-planar as seen in the value of the C1—C2—C3—C4 torsion angle of 62.24 (17) °. By contrast, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms from their least-squares plane being 0.027 Å. Hence, the three component aggregate has the shape of a flattened extended chair. The structure of co-crystal (I) resembles closely that with 4-pyridinealdazine (Arman et al., 2010b) but the structures are not isomorphous.

In the crystal packing, the three component aggregates pack into layers parallel to (022) being connected by C—H···O and C—H···π contacts, Fig. 4 and Table 1.

Related literature top

For related studies on co-crystal formation involving the isomeric n-pyridinealdazines, see: Broker et al. (2008); Arman et al. (2010a,b).

Experimental top

Golden prisms of (I) were isolated from the 2:1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 3-[(1E)-[(E)-2-(pyridin-3-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma Aldrich) in tetrahydrofuran, m. pt. 370–373 K.

IR assignment (cm-1): 2923 ν(C—H); 2444 ν(O—H); 1704 ν(C=O); 1628 ν(C=N); 1498, 1455, 1410 ν(C–C aromatic); 1346, 1307 ν(C—N); 819, 746 δ(C—H).

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2-phenylacetic acid found in co-crystal (I) showing displacement ellipsoids at the 50% probability level
[Figure 2] Fig. 2. Molecular structure of 3-pyridinealdazine found in co-crystal (I) showing displacement ellipsoids at the 50% probability level. The molecule is disposed about a centre of inversion with i = 1 - x, 1 - y, -z.
[Figure 3] Fig. 3. The three component aggregate in (I) highlighting the extended chair conformation. The O—H···N hydrogen bonds are shown as orange dashed lines.
[Figure 4] Fig. 4. A view in projection down the a axis highlighting the stacking of layers in co-crystal (I) mediated by O—H···N, C—H···O and C—H···π interactions shown as orange, blue and purple dashed lines, respectively.
2-Phenylacetic acid–3-{(E)-2-[(E)-pyridin-3-ylmethylidene]hydrazin-1- ylidenemethyl}pyridine (2/1) top
Crystal data top
C12H10N4·2C8H8O2Z = 1
Mr = 482.53F(000) = 254
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.511 (2) ÅCell parameters from 2727 reflections
b = 9.536 (4) Åθ = 2.6–40.1°
c = 12.434 (6) ŵ = 0.09 mm1
α = 80.30 (2)°T = 98 K
β = 88.45 (3)°Prism, gold
γ = 76.46 (2)°0.52 × 0.32 × 0.10 mm
V = 626.1 (5) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube2578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 67
Tmin = 0.832, Tmax = 1.000k = 1112
5606 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.17P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C12H10N4·2C8H8O2γ = 76.46 (2)°
Mr = 482.53V = 626.1 (5) Å3
Triclinic, P1Z = 1
a = 5.511 (2) ÅMo Kα radiation
b = 9.536 (4) ŵ = 0.09 mm1
c = 12.434 (6) ÅT = 98 K
α = 80.30 (2)°0.52 × 0.32 × 0.10 mm
β = 88.45 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2578 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 1.000Rint = 0.026
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
2849 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4813 (2)0.37678 (11)0.41019 (8)0.0306 (3)
H1o0.616 (2)0.346 (2)0.3774 (15)0.046*
O20.65187 (19)0.18266 (12)0.53456 (8)0.0327 (3)
C10.4823 (3)0.28746 (15)0.50429 (11)0.0244 (3)
C20.2466 (2)0.33170 (15)0.56825 (11)0.0260 (3)
H2A0.21040.43870.56690.031*
H2B0.10590.31050.53110.031*
C30.2583 (2)0.25628 (14)0.68565 (11)0.0233 (3)
C40.4322 (3)0.27578 (15)0.75870 (11)0.0260 (3)
H40.54760.33370.73360.031*
C50.4367 (3)0.21091 (16)0.86760 (12)0.0301 (3)
H50.55500.22470.91660.036*
C60.2690 (3)0.12602 (18)0.90514 (12)0.0339 (3)
H60.27060.08290.97990.041*
C70.0988 (3)0.10450 (18)0.83273 (13)0.0347 (4)
H70.01420.04500.85770.042*
C80.0934 (2)0.16981 (16)0.72377 (12)0.0284 (3)
H80.02440.15510.67490.034*
N10.0907 (2)0.29342 (13)0.30452 (10)0.0282 (3)
N20.4880 (2)0.43938 (12)0.03906 (9)0.0258 (3)
C90.0632 (3)0.16205 (16)0.33502 (12)0.0296 (3)
H90.01360.09600.39260.035*
C100.2924 (3)0.11778 (16)0.28634 (12)0.0305 (3)
H100.39540.02310.30970.037*
C110.3679 (3)0.21366 (15)0.20351 (12)0.0276 (3)
H110.52330.18590.16870.033*
C120.2118 (3)0.35235 (15)0.17169 (11)0.0241 (3)
C130.0167 (3)0.38574 (15)0.22392 (11)0.0266 (3)
H130.12540.47880.20110.032*
C140.2776 (3)0.46341 (15)0.08762 (11)0.0253 (3)
H140.16240.55510.06850.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (6)0.0296 (5)0.0252 (5)0.0036 (4)0.0036 (4)0.0007 (4)
O20.0301 (5)0.0331 (6)0.0281 (5)0.0021 (4)0.0024 (4)0.0004 (4)
C10.0267 (6)0.0245 (6)0.0224 (6)0.0067 (5)0.0020 (5)0.0038 (5)
C20.0231 (6)0.0258 (7)0.0265 (7)0.0022 (5)0.0011 (5)0.0019 (5)
C30.0214 (6)0.0223 (6)0.0242 (7)0.0001 (5)0.0008 (5)0.0054 (5)
C40.0254 (6)0.0227 (6)0.0293 (7)0.0025 (5)0.0006 (5)0.0062 (5)
C50.0280 (7)0.0319 (7)0.0281 (7)0.0025 (6)0.0030 (5)0.0114 (6)
C60.0312 (7)0.0391 (8)0.0242 (7)0.0028 (6)0.0036 (5)0.0013 (6)
C70.0255 (7)0.0376 (8)0.0366 (8)0.0053 (6)0.0057 (6)0.0019 (6)
C80.0212 (6)0.0315 (7)0.0314 (7)0.0044 (5)0.0010 (5)0.0043 (6)
N10.0316 (6)0.0279 (6)0.0253 (6)0.0074 (5)0.0043 (5)0.0051 (5)
N20.0309 (6)0.0236 (6)0.0229 (6)0.0070 (5)0.0021 (4)0.0030 (5)
C90.0374 (8)0.0241 (7)0.0276 (7)0.0091 (6)0.0017 (6)0.0029 (5)
C100.0354 (8)0.0224 (7)0.0318 (7)0.0037 (6)0.0017 (6)0.0039 (6)
C110.0281 (7)0.0253 (7)0.0290 (7)0.0039 (5)0.0024 (5)0.0070 (5)
C120.0275 (7)0.0227 (6)0.0224 (6)0.0056 (5)0.0006 (5)0.0052 (5)
C130.0290 (7)0.0242 (7)0.0250 (7)0.0030 (5)0.0012 (5)0.0042 (5)
C140.0280 (7)0.0229 (6)0.0244 (6)0.0042 (5)0.0005 (5)0.0045 (5)
Geometric parameters (Å, º) top
O1—C11.3254 (17)C7—H70.9500
O1—H1o0.853 (9)C8—H80.9500
O2—C11.2120 (17)N1—C91.3389 (19)
C1—C21.516 (2)N1—C131.3397 (18)
C2—C31.5105 (19)N2—C141.2832 (19)
C2—H2A0.9900N2—N2i1.408 (2)
C2—H2B0.9900C9—C101.391 (2)
C3—C81.388 (2)C9—H90.9500
C3—C41.4019 (19)C10—C111.381 (2)
C4—C51.389 (2)C10—H100.9500
C4—H40.9500C11—C121.398 (2)
C5—C61.388 (2)C11—H110.9500
C5—H50.9500C12—C131.395 (2)
C6—C71.390 (2)C12—C141.4602 (19)
C6—H60.9500C13—H130.9500
C7—C81.390 (2)C14—H140.9500
C1—O1—H1O107.8 (14)C8—C7—H7119.9
O2—C1—O1123.54 (13)C3—C8—C7120.66 (14)
O2—C1—C2124.48 (13)C3—C8—H8119.7
O1—C1—C2111.98 (12)C7—C8—H8119.7
C3—C2—C1114.69 (11)C9—N1—C13117.66 (13)
C3—C2—H2A108.6C14—N2—N2i111.72 (14)
C1—C2—H2A108.6N1—C9—C10123.08 (13)
C3—C2—H2B108.6N1—C9—H9118.5
C1—C2—H2B108.6C10—C9—H9118.5
H2A—C2—H2B107.6C11—C10—C9118.95 (13)
C8—C3—C4118.88 (13)C11—C10—H10120.5
C8—C3—C2120.74 (12)C9—C10—H10120.5
C4—C3—C2120.37 (13)C10—C11—C12118.88 (13)
C5—C4—C3120.36 (14)C10—C11—H11120.6
C5—C4—H4119.8C12—C11—H11120.6
C3—C4—H4119.8C13—C12—C11117.99 (13)
C6—C5—C4120.29 (14)C13—C12—C14118.80 (12)
C6—C5—H5119.9C11—C12—C14123.21 (13)
C4—C5—H5119.9N1—C13—C12123.42 (13)
C5—C6—C7119.58 (14)N1—C13—H13118.3
C5—C6—H6120.2C12—C13—H13118.3
C7—C6—H6120.2N2—C14—C12121.22 (13)
C6—C7—C8120.21 (15)N2—C14—H14119.4
C6—C7—H7119.9C12—C14—H14119.4
O2—C1—C2—C313.2 (2)C13—N1—C9—C100.6 (2)
O1—C1—C2—C3167.21 (12)N1—C9—C10—C110.8 (2)
C1—C2—C3—C8119.47 (14)C9—C10—C11—C120.3 (2)
C1—C2—C3—C462.24 (17)C10—C11—C12—C131.5 (2)
C8—C3—C4—C50.8 (2)C10—C11—C12—C14177.93 (13)
C2—C3—C4—C5177.55 (12)C9—N1—C13—C120.7 (2)
C3—C4—C5—C60.0 (2)C11—C12—C13—N11.8 (2)
C4—C5—C6—C70.9 (2)C14—C12—C13—N1177.69 (13)
C5—C6—C7—C81.2 (2)N2i—N2—C14—C12179.76 (13)
C4—C3—C8—C70.5 (2)C13—C12—C14—N2178.28 (13)
C2—C3—C8—C7177.80 (13)C11—C12—C14—N21.1 (2)
C6—C7—C8—C30.5 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1ii0.85 (2)1.84 (2)2.689 (2)176 (2)
C8—H8···O2iii0.952.473.398 (2)166
C10—H10···O2iv0.952.573.277 (2)132
C10—H10···Cg1iv0.952.893.627 (2)135
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N4·2C8H8O2
Mr482.53
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)5.511 (2), 9.536 (4), 12.434 (6)
α, β, γ (°)80.30 (2), 88.45 (3), 76.46 (2)
V3)626.1 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.32 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.832, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5606, 2849, 2578
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 1.09
No. of reflections2849
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.852 (15)1.838 (15)2.689 (2)175.8 (19)
C8—H8···O2ii0.952.473.398 (2)166
C10—H10···O2iii0.952.573.277 (2)132
C10—H10···Cg1iii0.952.893.627 (2)135
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds