organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[(E)-1,3-Benzodioxol-5-yl]methyl­­idene­amino}­benzoic acid

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bGovt. M. D. College, Department of Chemistry, Toba Tek Singh, Punjab, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 September 2010; accepted 25 September 2010; online 30 September 2010)

In the title compound, C15H11NO4, the dihedral angle between the aromatic rings is 23.8 (2)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For a related structure, see: Yang et al. (2007[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Yu, Z.-Q. (2007). Acta Cryst. E63, o4098.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO4

  • Mr = 269.25

  • Orthorhombic, P n a 21

  • a = 22.884 (2) Å

  • b = 3.9402 (4) Å

  • c = 13.5696 (13) Å

  • V = 1223.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 28104 measured reflections

  • 1152 independent reflections

  • 925 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.12

  • 1152 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.83 (7) 1.83 (7) 2.544 (5) 143 (7)
C14—H14⋯O2i 0.93 2.42 3.337 (6) 170
C15—H15A⋯O2ii 0.97 2.60 3.532 (6) 162
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported as a part of our on going project related to synthesize various Schiff bases of pipronal and anthranilic acid with different anilines and aldehydes, respectively. The title compound will be utilized for preparing the metal complexes.

The crystal structure of (II) i.e., (E)-4-methoxy-N-(3,4-methylenedioxybenzylidene)aniline (Yang et al., 2007) has been published which are related to the title compound.

In the title compound, the anthranilic acid moiety A (C1—C7/N1/O1/O2) and pipronal group B (C8—C15/O3/O4) are almost planar with r. m. s. deviations of 0.0105 and 0.0112 Å, respectively. The dihedral angle between A/B is 23.78 (9)°. The intramolecular H-bonding of O—H···N type (Table 1, Fig. 1) complete an S(6) ring motif (Bernstein et al., 1995). The title compound consist of three dimensional zigzag polymeric network (Fig. 2) due to H-bondings of C—H···O type (Table 2). There does not exist any C—H···π interaction.

Related literature top

For a related structure, see: Yang et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of anthranilic acid and pipronal were refluxed in methanol for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange yellow needles of (I) after a week.

Refinement top

In the absence of significant anomalous scattering, all Friedal pairs were merged.

The coordinates of hydroxy H-atom were refined. The carbon H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represent the intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form polymeric chains.
2-{[(E)-1,3-Benzodioxol-5-yl]methylideneamino}benzoic acid top
Crystal data top
C15H11NO4F(000) = 560
Mr = 269.25Dx = 1.462 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 925 reflections
a = 22.884 (2) Åθ = 2.3–25.2°
b = 3.9402 (4) ŵ = 0.11 mm1
c = 13.5696 (13) ÅT = 296 K
V = 1223.5 (2) Å3Needle, orange yellow
Z = 40.28 × 0.14 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1152 independent reflections
Radiation source: fine-focus sealed tube925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.20 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω scansh = 2727
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 44
Tmin = 0.980, Tmax = 0.988l = 1616
28104 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.1607P]
where P = (Fo2 + 2Fc2)/3
1152 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C15H11NO4V = 1223.5 (2) Å3
Mr = 269.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.884 (2) ŵ = 0.11 mm1
b = 3.9402 (4) ÅT = 296 K
c = 13.5696 (13) Å0.28 × 0.14 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
925 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.079
28104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.18 e Å3
1152 reflectionsΔρmin = 0.21 e Å3
184 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51893 (16)0.1333 (11)0.1270 (2)0.0783 (14)
O20.60847 (16)0.3309 (12)0.1082 (3)0.0870 (16)
O30.28294 (13)0.2221 (9)0.0939 (2)0.0644 (11)
O40.22350 (12)0.5110 (9)0.2031 (3)0.0615 (11)
N10.47183 (15)0.1225 (8)0.2968 (3)0.0477 (11)
C10.5677 (2)0.2642 (12)0.1623 (3)0.0597 (17)
C20.56974 (18)0.3361 (10)0.2714 (3)0.0453 (12)
C30.62059 (19)0.4809 (11)0.3079 (4)0.0557 (16)
C40.6268 (2)0.5551 (12)0.4064 (4)0.0603 (17)
C50.5811 (2)0.4898 (11)0.4697 (4)0.0613 (17)
C60.53019 (19)0.3494 (11)0.4360 (3)0.0550 (16)
C70.52366 (16)0.2630 (10)0.3363 (3)0.0427 (12)
C80.43348 (17)0.0263 (9)0.3505 (3)0.0487 (12)
C90.37893 (17)0.1565 (9)0.3122 (3)0.0453 (12)
C100.36230 (17)0.1111 (11)0.2122 (3)0.0480 (12)
C110.30981 (17)0.2372 (11)0.1848 (3)0.0463 (12)
C120.27312 (17)0.4075 (11)0.2501 (3)0.0477 (14)
C130.28753 (18)0.4521 (11)0.3468 (4)0.0520 (14)
C140.34183 (19)0.3234 (11)0.3770 (3)0.0520 (14)
C150.2282 (2)0.3962 (14)0.1039 (4)0.0650 (17)
H10.491 (3)0.140 (15)0.166 (5)0.0937*
H30.651120.528800.264870.0668*
H40.661400.648310.430000.0722*
H50.584890.541760.536240.0734*
H60.499570.310780.479610.0655*
H80.441140.051850.417340.0582*
H100.386440.000510.167630.0575*
H130.262610.562290.390430.0623*
H140.353280.350790.442310.0623*
H15A0.196200.244110.088410.0780*
H15B0.226710.587490.059020.0780*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (2)0.130 (3)0.034 (2)0.009 (2)0.0057 (16)0.008 (2)
O20.074 (2)0.143 (4)0.044 (2)0.012 (2)0.0141 (19)0.003 (2)
O30.0587 (18)0.094 (2)0.0405 (18)0.0102 (18)0.0039 (15)0.0052 (17)
O40.0574 (17)0.080 (2)0.047 (2)0.0098 (16)0.0032 (15)0.0034 (18)
N10.0472 (19)0.055 (2)0.041 (2)0.0002 (16)0.0019 (17)0.0018 (17)
C10.055 (3)0.079 (3)0.045 (3)0.000 (2)0.002 (2)0.004 (2)
C20.052 (2)0.049 (2)0.035 (2)0.0056 (19)0.0013 (18)0.0029 (18)
C30.053 (2)0.065 (3)0.049 (3)0.002 (2)0.002 (2)0.001 (2)
C40.057 (3)0.068 (3)0.056 (3)0.007 (2)0.011 (2)0.002 (2)
C50.079 (3)0.062 (3)0.043 (3)0.008 (3)0.007 (3)0.008 (2)
C60.063 (3)0.059 (2)0.043 (3)0.003 (2)0.004 (2)0.002 (2)
C70.048 (2)0.044 (2)0.036 (2)0.0044 (18)0.0005 (18)0.0011 (16)
C80.055 (2)0.049 (2)0.042 (2)0.007 (2)0.000 (2)0.002 (2)
C90.048 (2)0.047 (2)0.041 (2)0.0048 (18)0.0014 (19)0.0020 (18)
C100.050 (2)0.054 (2)0.040 (2)0.0019 (19)0.006 (2)0.0058 (19)
C110.052 (2)0.054 (2)0.033 (2)0.009 (2)0.0016 (19)0.0006 (19)
C120.045 (2)0.055 (2)0.043 (3)0.0001 (19)0.0020 (19)0.001 (2)
C130.056 (2)0.055 (2)0.045 (3)0.000 (2)0.006 (2)0.006 (2)
C140.056 (2)0.054 (2)0.046 (3)0.008 (2)0.006 (2)0.010 (2)
C150.067 (3)0.082 (3)0.046 (3)0.003 (3)0.005 (2)0.006 (2)
Geometric parameters (Å, º) top
O1—C11.320 (6)C9—C141.388 (6)
O2—C11.216 (6)C9—C101.421 (6)
O3—C111.380 (5)C10—C111.352 (6)
O3—C151.435 (6)C11—C121.393 (6)
O4—C121.365 (5)C12—C131.364 (7)
O4—C151.424 (7)C13—C141.403 (6)
O1—H10.83 (7)C3—H30.9300
N1—C71.414 (5)C4—H40.9300
N1—C81.283 (5)C5—H50.9300
C1—C21.508 (6)C6—H60.9300
C2—C71.404 (6)C8—H80.9300
C2—C31.387 (6)C10—H100.9300
C3—C41.376 (8)C13—H130.9300
C4—C51.378 (7)C14—H140.9300
C5—C61.368 (6)C15—H15A0.9700
C6—C71.403 (6)C15—H15B0.9700
C8—C91.446 (5)
C11—O3—C15106.5 (3)C11—C12—C13121.9 (4)
C12—O4—C15106.5 (3)O4—C12—C11110.4 (4)
C1—O1—H1114 (5)C12—C13—C14116.6 (4)
C7—N1—C8122.5 (4)C9—C14—C13121.9 (4)
O1—C1—O2121.0 (4)O3—C15—O4107.9 (4)
O1—C1—C2117.1 (4)C2—C3—H3119.00
O2—C1—C2121.9 (4)C4—C3—H3119.00
C1—C2—C3117.0 (4)C3—C4—H4120.00
C1—C2—C7123.7 (4)C5—C4—H4120.00
C3—C2—C7119.4 (4)C4—C5—H5120.00
C2—C3—C4121.4 (4)C6—C5—H5120.00
C3—C4—C5119.2 (4)C5—C6—H6120.00
C4—C5—C6120.9 (5)C7—C6—H6120.00
C5—C6—C7120.7 (4)N1—C8—H8118.00
N1—C7—C2118.2 (4)C9—C8—H8118.00
N1—C7—C6123.4 (4)C9—C10—H10121.00
C2—C7—C6118.4 (4)C11—C10—H10122.00
N1—C8—C9123.3 (4)C12—C13—H13122.00
C8—C9—C14117.9 (4)C14—C13—H13122.00
C10—C9—C14120.1 (4)C9—C14—H14119.00
C8—C9—C10122.0 (4)C13—C14—H14119.00
C9—C10—C11117.0 (4)O3—C15—H15A110.00
O3—C11—C10128.8 (4)O3—C15—H15B110.00
O3—C11—C12108.7 (3)O4—C15—H15A110.00
C10—C11—C12122.5 (4)O4—C15—H15B110.00
O4—C12—C13127.7 (4)H15A—C15—H15B109.00
C15—O3—C11—C10179.6 (5)C3—C4—C5—C60.7 (7)
C15—O3—C11—C121.2 (5)C4—C5—C6—C71.1 (7)
C11—O3—C15—O40.5 (5)C5—C6—C7—N1178.9 (4)
C15—O4—C12—C111.1 (5)C5—C6—C7—C22.4 (6)
C15—O4—C12—C13178.3 (5)N1—C8—C9—C103.7 (6)
C12—O4—C15—O30.4 (5)N1—C8—C9—C14177.8 (4)
C8—N1—C7—C2162.9 (4)C8—C9—C10—C11178.7 (4)
C8—N1—C7—C620.6 (6)C14—C9—C10—C110.2 (6)
C7—N1—C8—C9176.8 (3)C8—C9—C14—C13178.7 (4)
O1—C1—C2—C3178.6 (4)C10—C9—C14—C130.2 (6)
O1—C1—C2—C71.8 (6)C9—C10—C11—O3178.6 (4)
O2—C1—C2—C30.4 (7)C9—C10—C11—C120.5 (6)
O2—C1—C2—C7180.0 (5)O3—C11—C12—O41.5 (5)
C1—C2—C3—C4179.8 (4)O3—C11—C12—C13178.0 (4)
C7—C2—C3—C40.1 (6)C10—C11—C12—O4179.3 (4)
C1—C2—C7—N11.8 (6)C10—C11—C12—C131.3 (7)
C1—C2—C7—C6178.5 (4)O4—C12—C13—C14179.4 (4)
C3—C2—C7—N1178.6 (4)C11—C12—C13—C141.2 (6)
C3—C2—C7—C61.9 (6)C12—C13—C14—C90.5 (6)
C2—C3—C4—C51.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (7)1.83 (7)2.544 (5)143 (7)
C14—H14···O2i0.932.423.337 (6)170
C15—H15A···O2ii0.972.603.532 (6)162
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H11NO4
Mr269.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)22.884 (2), 3.9402 (4), 13.5696 (13)
V3)1223.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.14 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
28104, 1152, 925
Rint0.079
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.12
No. of reflections1152
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (7)1.83 (7)2.544 (5)143 (7)
C14—H14···O2i0.932.423.337 (6)170
C15—H15A···O2ii0.972.603.532 (6)162
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Yu, Z.-Q. (2007). Acta Cryst. E63, o4098.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds