organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl­­idene-4-ethyl­thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 25 September 2010; accepted 26 September 2010; online 30 September 2010)

The title compound, C10H13N3S, was prepared by the reaction of 4-ethyl­thio­semicarbazide and benzaldehyde. The dihedral angle between the benzene ring and the thio­urea unit is 8.96 (7)° and an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

Related literature

For background to the coordination chemistry of Schiff bases, see: Habermehl et al. (2006[Habermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445-1462.]). For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3S

  • Mr = 207.30

  • Monoclinic, P 21 /c

  • a = 8.4899 (17) Å

  • b = 13.467 (3) Å

  • c = 10.015 (2) Å

  • β = 96.04 (3)°

  • V = 1138.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10048 measured reflections

  • 2596 independent reflections

  • 2118 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.09

  • 2596 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.86 2.23 2.628 (2) 108
N2—H2A⋯S1i 0.86 2.74 3.5565 (16) 158
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are important intermediates which have been reported to be chiral coordination compound with many interesting properties (Habermehl et al., 2006). As part of our research for new Schiff-base compounds we synthesized the title compound (I), and describe its structure here. In the molecule structure, the dihedral angle between the benzene ring and the thiourea unit is 8.96 (7)°.

Bond lengths and angles agree with those observed in a related structure (Li & Jian, 2010).

Related literature top

For background to the coordination chemistry of Schiff bases, see: Habermehl et al. (2006). For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-ethylthiosemicarbazide (0.1 mol) and benzaldehyde (0.1 mol) was stirred in refluxing ethanol (25 mL) for 2 h to afford the title compound (0.079 mol, yield 79%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
1-Benzylidene-4-ethylthiosemicarbazide top
Crystal data top
C10H13N3SF(000) = 440
Mr = 207.30Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2596 reflections
a = 8.4899 (17) Åθ = 3.0–27.5°
b = 13.467 (3) ŵ = 0.25 mm1
c = 10.015 (2) ÅT = 293 K
β = 96.04 (3)°Block, colorless
V = 1138.7 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
phi and ω scansh = 109
10048 measured reflectionsk = 1717
2596 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.1728P]
where P = (Fo2 + 2Fc2)/3
2596 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C10H13N3SV = 1138.7 (4) Å3
Mr = 207.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4899 (17) ŵ = 0.25 mm1
b = 13.467 (3) ÅT = 293 K
c = 10.015 (2) Å0.22 × 0.20 × 0.18 mm
β = 96.04 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2118 reflections with I > 2σ(I)
10048 measured reflectionsRint = 0.031
2596 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
2596 reflectionsΔρmin = 0.40 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28967 (7)0.39580 (4)0.07292 (4)0.0744 (2)
N10.25491 (17)0.29999 (11)0.15603 (14)0.0596 (4)
H1A0.29160.28620.23720.072*
N20.46620 (17)0.40411 (10)0.15771 (13)0.0537 (3)
H2A0.52790.44160.11710.064*
N30.50010 (15)0.38467 (9)0.29257 (13)0.0479 (3)
C40.61893 (18)0.43036 (12)0.35133 (16)0.0504 (4)
H4A0.67680.47240.30140.061*
C30.3357 (2)0.36416 (12)0.08914 (15)0.0516 (4)
C50.66728 (17)0.41886 (11)0.49435 (16)0.0473 (3)
C60.5847 (2)0.35906 (13)0.57650 (17)0.0566 (4)
H6A0.49660.32350.53990.068*
C100.7983 (2)0.47106 (14)0.55174 (19)0.0624 (4)
H10A0.85420.51170.49830.075*
C70.6330 (3)0.35251 (16)0.71139 (19)0.0721 (5)
H7A0.57730.31250.76580.087*
C90.8465 (2)0.46324 (17)0.6869 (2)0.0765 (6)
H9A0.93560.49770.72380.092*
C80.7637 (3)0.40488 (16)0.7670 (2)0.0775 (6)
H8A0.79530.40050.85860.093*
C10.0363 (3)0.3091 (2)0.1253 (3)0.1024 (9)
H1B0.12900.27400.08760.154*
H1C0.03240.37290.08320.154*
H1D0.04050.31760.22000.154*
C20.1083 (3)0.25096 (16)0.1020 (2)0.0777 (6)
H2B0.10270.18620.14350.093*
H2C0.11020.24100.00630.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0973 (4)0.0820 (4)0.0422 (3)0.0240 (3)0.0006 (2)0.00516 (19)
N10.0682 (9)0.0602 (8)0.0491 (7)0.0158 (7)0.0001 (6)0.0046 (6)
N20.0586 (8)0.0584 (8)0.0443 (7)0.0070 (6)0.0066 (6)0.0044 (5)
N30.0514 (7)0.0472 (7)0.0451 (7)0.0009 (5)0.0046 (5)0.0014 (5)
C40.0470 (8)0.0513 (8)0.0534 (8)0.0022 (6)0.0070 (6)0.0066 (7)
C30.0598 (9)0.0503 (8)0.0450 (8)0.0013 (7)0.0070 (6)0.0036 (6)
C50.0444 (7)0.0436 (7)0.0533 (8)0.0039 (6)0.0026 (6)0.0001 (6)
C60.0599 (9)0.0524 (8)0.0572 (9)0.0016 (7)0.0049 (7)0.0063 (7)
C100.0529 (9)0.0616 (10)0.0714 (11)0.0050 (8)0.0000 (8)0.0015 (8)
C70.0932 (14)0.0654 (11)0.0584 (10)0.0106 (10)0.0110 (9)0.0107 (9)
C90.0693 (12)0.0740 (12)0.0806 (13)0.0041 (10)0.0182 (10)0.0179 (10)
C80.0976 (15)0.0781 (13)0.0528 (10)0.0246 (11)0.0108 (10)0.0087 (9)
C10.0765 (14)0.0977 (18)0.126 (2)0.0322 (14)0.0217 (14)0.0169 (15)
C20.0950 (15)0.0722 (12)0.0629 (11)0.0365 (11)0.0059 (10)0.0025 (9)
Geometric parameters (Å, º) top
S1—C31.6838 (16)C10—C91.376 (3)
N1—C31.328 (2)C10—H10A0.9300
N1—C21.462 (2)C7—C81.382 (3)
N1—H1A0.8600C7—H7A0.9300
N2—C31.352 (2)C9—C81.370 (3)
N2—N31.3761 (18)C9—H9A0.9300
N2—H2A0.8600C8—H8A0.9300
N3—C41.272 (2)C1—C21.495 (4)
C4—C51.456 (2)C1—H1B0.9600
C4—H4A0.9300C1—H1C0.9600
C5—C101.389 (2)C1—H1D0.9600
C5—C61.392 (2)C2—H2B0.9700
C6—C71.373 (2)C2—H2C0.9700
C6—H6A0.9300
C3—N1—C2124.92 (15)C6—C7—C8120.6 (2)
C3—N1—H1A117.5C6—C7—H7A119.7
C2—N1—H1A117.5C8—C7—H7A119.7
C3—N2—N3119.89 (13)C8—C9—C10120.19 (19)
C3—N2—H2A120.1C8—C9—H9A119.9
N3—N2—H2A120.1C10—C9—H9A119.9
C4—N3—N2115.84 (13)C9—C8—C7119.75 (19)
N3—C4—C5122.10 (14)C9—C8—H8A120.1
N3—C4—H4A118.9C7—C8—H8A120.1
C5—C4—H4A118.9C2—C1—H1B109.5
N1—C3—N2116.22 (14)C2—C1—H1C109.5
N1—C3—S1124.84 (13)H1B—C1—H1C109.5
N2—C3—S1118.92 (13)C2—C1—H1D109.5
C10—C5—C6118.67 (15)H1B—C1—H1D109.5
C10—C5—C4118.95 (15)H1C—C1—H1D109.5
C6—C5—C4122.37 (14)N1—C2—C1112.78 (18)
C7—C6—C5120.11 (17)N1—C2—H2B109.0
C7—C6—H6A119.9C1—C2—H2B109.0
C5—C6—H6A119.9N1—C2—H2C109.0
C9—C10—C5120.71 (18)C1—C2—H2C109.0
C9—C10—H10A119.6H2B—C2—H2C107.8
C5—C10—H10A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.232.628 (2)108
N2—H2A···S1i0.862.743.5565 (16)158
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13N3S
Mr207.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4899 (17), 13.467 (3), 10.015 (2)
β (°) 96.04 (3)
V3)1138.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10048, 2596, 2118
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.09
No. of reflections2596
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.40

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.232.628 (2)108
N2—H2A···S1i0.862.743.5565 (16)158
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHabermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445–1462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds