organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-{[(E)-5-Chloro-2-hy­dr­oxy­benzyl­­idene]amino}­phen­yl)ethanone oxime

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: zhaoli_72@163.com

(Received 21 August 2010; accepted 27 August 2010; online 4 September 2010)

The title compound, C15H13ClN2O2, is an aromatic Schiff base having an aldoxime substituent; the two rings on the azomethine linkage are twisted by 44.4 (1)°. The phenolic H atom is intra­molecularly hydrogen bonded to the azomethine N atom, generating an S(6) ring. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds occur. The crystal studied was a non-merohedral twin with a 35% minor component.

Related literature

For background to oxime-type compounds, see: Dong et al. (2009[Dong, W.-K., Duan, J.-G., Guan, Y.-H., Shi, J.-Y. & Zhao, C.-Y. (2009). Inorg. Chim. Acta, 362, 1129-1134.], 2010b[Dong, W.-K., Sun, Y.-X., He, X.-N., Tong, J.-F. & Wu, J.-C. (2010b). Spectrochim. Acta Part A, 76, 476-483.]). For the synthesis, see: Rafiq et al. (2008[Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.]); Dong et al. (2010a[Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010a). Polyhedron, 29, 2087-2097.]). For the treatment of non-merohedrally twinned diffraction intensities, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). We have reported the crystal structure of one of the first examples of a Schiff base bearing the oxime unit, see: Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Monoclinic, P 21 /c

  • a = 15.356 (2) Å

  • b = 14.035 (2) Å

  • c = 6.1124 (6) Å

  • β = 95.244 (1)°

  • V = 1311.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.986

  • 3689 measured reflections

  • 2971 independent reflections

  • 1552 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.239

  • S = 1.02

  • 2970 reflections

  • 192 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (5) 1.81 (3) 2.594 (5) 153 (6)
O2—H2⋯N2i 0.86 (5) 2.06 (4) 2.819 (5) 147 (6)
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Oxime-type compounds are a very important ligands in coordination chemistry (Dong et al., 2010b; Dong et al., 2009). 4-Aminophenylethanone oxime is a amino compound having an oxime unit, a unit that can undergo a wide range of transformations. On the other hand, the amino unit lends itself to condensation with carbonyl compounds to yield Schiff bases, yet another class of compounds having an equally wide range of applications. We have reported the crystal structure of one of the first examples of a Schiff base bearing the oxime unit (Zhao et al., 2009). Here we report the synthesis and crystal structure of (E)-4-[(1-Hydroxyimino)ethyl]-N-(4'-methylbenzylidene)aniline (I), (Fig. 1).

The single-crystal structure of the title compound is built up by discrete C15H13ClN2O2 molecules, in which all bond lengths are in normal ranges. Within the molecule, the two rings on the azomethine linkage are twisted by 44.4 (1) °. In the crystal structure, adjacent molecules are connected by an O–H···Noxime hydrogen bond to generate a dimer (Table 1 and Fig. 2).

Related literature top

For background to oxime-type compounds, see: Dong et al. (2009, 2010b). For the synthesis, see: Rafiq et al. (2008); Dong et al. (2010a). For the treatment of non-merohedrally twinned diffraction intensities, see: Spek (2009). We have reported the crystal structure of one of the first examples of a Schiff base bearing the oxime unit, see: Zhao et al. (2009).

Experimental top

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq et al., 2008; Dong et al., 2010a). To an ethanol solution (6 ml) of 4-aminophenylethanone oxime (152.1 mg, 1.00 mmol) was added dropwise an ethanol solution (6 ml) of 5-chlorosalicylaldehyde (159.2 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 266.5 mg (Yield, 92.3%) of solid; m.p. 484–486 K. Pale-yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a mixed solution of ethyl acetate-chloroform (3:2) of (I) at room temperature for about four weeks. Anal. Calcd. for C15H13ClN2O2: C, 62.40; H, 4.54; N, 9.70; Found: C, 62.22; H, 4.50; N, 9.85.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H of 0.85±0.01 Å; their temperature factors were freely refined.

The crystal is a non-merohedral twin; the diffraction intensities were separated into two domains by using PLATON (Spek, 2009); the minor twin component was 35%.

The somewhat large weighting scheme is probably the consequence of the twinning. Lowering the 2θ limit to 50 ° leads to a marginally better refinement but the weighting scheme is identical.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C15H13ClN2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded dimer.
1-(4-{[(E)-5-Chloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime top
Crystal data top
C15H13ClN2O2F(000) = 600
Mr = 288.72Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1371 reflections
a = 15.356 (2) Åθ = 2.7–24.9°
b = 14.035 (2) ŵ = 0.29 mm1
c = 6.1124 (6) ÅT = 293 K
β = 95.244 (1)°Needle-like, yellow
V = 1311.8 (2) Å30.40 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2971 independent reflections
Radiation source: fine-focus sealed tube1552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.892, Tmax = 0.986k = 1818
3689 measured reflectionsl = 27
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1159P)2]
where P = (Fo2 + 2Fc2)/3
2970 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H13ClN2O2V = 1311.8 (2) Å3
Mr = 288.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.356 (2) ŵ = 0.29 mm1
b = 14.035 (2) ÅT = 293 K
c = 6.1124 (6) Å0.40 × 0.10 × 0.05 mm
β = 95.244 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1552 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.986Rint = 0.092
3689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0762 restraints
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
2970 reflectionsΔρmin = 0.34 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26367 (8)0.34104 (10)0.2064 (3)0.0716 (5)
N10.6685 (2)0.3635 (2)0.1036 (6)0.0378 (9)
O10.5752 (2)0.4086 (3)0.2569 (6)0.0543 (9)
N20.9958 (2)0.4344 (2)0.8002 (6)0.0444 (10)
O21.0777 (2)0.4341 (2)0.9205 (7)0.0565 (10)
C10.5046 (3)0.3912 (3)0.1470 (8)0.0395 (11)
C20.4222 (3)0.4095 (3)0.2484 (8)0.0454 (11)
H2A0.41640.43330.39100.054*
C30.3485 (3)0.3930 (3)0.1418 (9)0.0481 (12)
H30.29330.40510.21240.058*
C40.3566 (3)0.3589 (3)0.0678 (9)0.0421 (11)
C50.4378 (3)0.3407 (3)0.1758 (8)0.0407 (10)
H50.44240.31780.31920.049*
C60.5131 (3)0.3569 (3)0.0687 (7)0.0353 (10)
C70.5974 (3)0.3471 (3)0.1921 (7)0.0359 (10)
H70.60020.32850.33860.043*
C80.7485 (2)0.3677 (3)0.2391 (7)0.0350 (10)
C90.8234 (3)0.3372 (3)0.1531 (7)0.0359 (10)
H90.82060.31240.01160.043*
C100.9030 (3)0.3438 (3)0.2787 (8)0.0368 (10)
H100.95310.32190.22010.044*
C110.9104 (2)0.3813 (3)0.4848 (7)0.0327 (10)
C120.8338 (2)0.4151 (3)0.5670 (7)0.0368 (10)
H120.83680.44270.70580.044*
C130.7546 (3)0.4079 (3)0.4454 (7)0.0374 (10)
H130.70440.43040.50270.045*
C140.9956 (3)0.3880 (3)0.6196 (8)0.0363 (10)
C151.0748 (3)0.3417 (3)0.5426 (9)0.0524 (13)
H15A1.12160.34360.65800.079*
H15B1.09210.37520.41650.079*
H15C1.06160.27670.50370.079*
H10.619 (3)0.395 (4)0.166 (8)0.10 (2)*
H21.076 (4)0.471 (4)1.031 (8)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0347 (6)0.0879 (10)0.0928 (13)0.0041 (6)0.0083 (7)0.0070 (9)
N10.0316 (19)0.0419 (19)0.039 (2)0.0017 (14)0.0015 (17)0.0003 (16)
O10.048 (2)0.075 (2)0.040 (2)0.0013 (17)0.0039 (18)0.0068 (18)
N20.0351 (19)0.050 (2)0.045 (3)0.0027 (16)0.0121 (18)0.0007 (19)
O20.0406 (17)0.061 (2)0.064 (3)0.0004 (15)0.0211 (17)0.004 (2)
C10.037 (2)0.038 (2)0.041 (3)0.0029 (18)0.005 (2)0.003 (2)
C20.050 (3)0.041 (2)0.043 (3)0.006 (2)0.014 (2)0.001 (2)
C30.037 (2)0.045 (3)0.059 (4)0.0054 (19)0.011 (2)0.005 (2)
C40.033 (2)0.039 (2)0.053 (3)0.0005 (17)0.001 (2)0.005 (2)
C50.040 (2)0.037 (2)0.044 (3)0.0021 (18)0.004 (2)0.002 (2)
C60.032 (2)0.036 (2)0.037 (3)0.0014 (17)0.0029 (19)0.0036 (19)
C70.039 (2)0.034 (2)0.033 (2)0.0015 (17)0.004 (2)0.0011 (19)
C80.032 (2)0.035 (2)0.037 (3)0.0023 (16)0.0002 (19)0.0018 (19)
C90.039 (2)0.038 (2)0.030 (2)0.0001 (17)0.0020 (19)0.0032 (18)
C100.030 (2)0.039 (2)0.042 (3)0.0003 (17)0.005 (2)0.002 (2)
C110.028 (2)0.030 (2)0.040 (3)0.0040 (15)0.0033 (19)0.0008 (18)
C120.037 (2)0.043 (2)0.030 (2)0.0021 (18)0.0006 (19)0.0060 (19)
C130.029 (2)0.046 (2)0.037 (3)0.0025 (17)0.0045 (19)0.003 (2)
C140.032 (2)0.033 (2)0.042 (3)0.0031 (17)0.002 (2)0.005 (2)
C150.031 (2)0.066 (3)0.060 (3)0.003 (2)0.005 (2)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C41.743 (5)C6—C71.444 (6)
N1—C71.282 (5)C7—H70.9300
N1—C81.419 (5)C8—C131.376 (6)
O1—C11.348 (5)C8—C91.375 (5)
O1—H10.85 (5)C9—C101.387 (6)
N2—C141.281 (6)C9—H90.9300
N2—O21.398 (4)C10—C111.360 (6)
O2—H20.86 (5)C10—H100.9300
C1—C21.382 (6)C11—C121.403 (5)
C1—C61.398 (6)C11—C141.484 (5)
C2—C31.376 (6)C12—C131.370 (5)
C2—H2A0.9300C12—H120.9300
C3—C41.363 (7)C13—H130.9300
C3—H30.9300C14—C151.492 (6)
C4—C51.379 (6)C15—H15A0.9600
C5—C61.400 (6)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C7—N1—C8119.1 (4)C13—C8—N1122.3 (4)
C1—O1—H1104 (4)C9—C8—N1118.3 (4)
C14—N2—O2112.6 (4)C8—C9—C10119.6 (4)
N2—O2—H2109 (5)C8—C9—H9120.2
O1—C1—C2119.2 (4)C10—C9—H9120.2
O1—C1—C6121.5 (4)C11—C10—C9122.2 (4)
C2—C1—C6119.3 (4)C11—C10—H10118.9
C3—C2—C1121.1 (5)C9—C10—H10118.9
C3—C2—H2A119.5C10—C11—C12117.4 (4)
C1—C2—H2A119.5C10—C11—C14122.2 (4)
C4—C3—C2119.7 (4)C12—C11—C14120.4 (4)
C4—C3—H3120.2C13—C12—C11120.9 (4)
C2—C3—H3120.2C13—C12—H12119.6
C3—C4—C5121.1 (4)C11—C12—H12119.6
C3—C4—Cl1119.9 (4)C12—C13—C8120.6 (4)
C5—C4—Cl1119.0 (4)C12—C13—H13119.7
C4—C5—C6119.7 (5)C8—C13—H13119.7
C4—C5—H5120.1N2—C14—C11116.3 (4)
C6—C5—H5120.1N2—C14—C15123.7 (4)
C1—C6—C5119.2 (4)C11—C14—C15120.0 (4)
C1—C6—C7121.8 (4)C14—C15—H15A109.5
C5—C6—C7118.7 (4)C14—C15—H15B109.5
N1—C7—C6121.3 (4)H15A—C15—H15B109.5
N1—C7—H7119.4C14—C15—H15C109.5
C6—C7—H7119.4H15A—C15—H15C109.5
C13—C8—C9119.2 (4)H15B—C15—H15C109.5
O1—C1—C2—C3179.8 (4)C7—N1—C8—C9147.4 (4)
C6—C1—C2—C31.0 (6)C13—C8—C9—C102.7 (6)
C1—C2—C3—C40.5 (6)N1—C8—C9—C10177.6 (4)
C2—C3—C4—C50.2 (7)C8—C9—C10—C111.2 (6)
C2—C3—C4—Cl1178.2 (3)C9—C10—C11—C121.0 (6)
C3—C4—C5—C60.4 (6)C9—C10—C11—C14179.8 (4)
Cl1—C4—C5—C6178.4 (3)C10—C11—C12—C131.7 (6)
O1—C1—C6—C5179.6 (4)C14—C11—C12—C13179.0 (4)
C2—C1—C6—C50.8 (6)C11—C12—C13—C80.3 (7)
O1—C1—C6—C76.1 (6)C9—C8—C13—C121.9 (6)
C2—C1—C6—C7172.6 (4)N1—C8—C13—C12176.6 (4)
C4—C5—C6—C10.1 (6)O2—N2—C14—C11177.7 (3)
C4—C5—C6—C7173.6 (4)O2—N2—C14—C151.9 (6)
C8—N1—C7—C6170.1 (3)C10—C11—C14—N2172.3 (4)
C1—C6—C7—N14.7 (6)C12—C11—C14—N27.0 (6)
C5—C6—C7—N1178.2 (3)C10—C11—C14—C158.1 (6)
C7—N1—C8—C1337.9 (6)C12—C11—C14—C15172.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (5)1.81 (3)2.594 (5)153 (6)
O2—H2···N2i0.86 (5)2.06 (4)2.819 (5)147 (6)
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.356 (2), 14.035 (2), 6.1124 (6)
β (°) 95.244 (1)
V3)1311.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3689, 2971, 1552
Rint0.092
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.239, 1.02
No. of reflections2970
No. of parameters192
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (5)1.81 (3)2.594 (5)153 (6)
O2—H2···N2i0.86 (5)2.06 (4)2.819 (5)147 (6)
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

We thank the Educational Department Foundation of Gansu Province (No. 20873) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W.-K., Duan, J.-G., Guan, Y.-H., Shi, J.-Y. & Zhao, C.-Y. (2009). Inorg. Chim. Acta, 362, 1129–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Sun, Y.-X., He, X.-N., Tong, J.-F. & Wu, J.-C. (2010b). Spectrochim. Acta Part A, 76, 476–483.  CrossRef Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010a). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationRafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds