metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-bi­phenyl-3,3′-di­carboxyl­ato)bis­[μ2-1,1′-(butane-1,4-di­yl)di­imidazole](μ2-oxalato)dimanganese(II)]

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: zhubaoyong@yahoo.cn

(Received 21 August 2010; accepted 1 September 2010; online 4 September 2010)

In the title coordination compound, [Mn2(C14H8O4)(C2O4)(C10H14N4)2]n, the biphenyl-3,3′-dicarboxyl­ate and oxalate anions, both situated on inversion centres, function in a bridging mode, linking the dinuclear MnII atoms into wave-like layers. Each 1,1′-(1,4-butane-1,4-di­yl)diimidazole ligand coordinates to two MnII atoms located in adjacent layers via Mn—N coordination bonds, giving a three-dimensional network. As the methyl­ene groups can bend freely relative to each other due to the C atoms connected via single bonds, the 1,1′-(butane-1,4-di­yl)diimidazole ligand forms an S-shaped conformation, which makes the void in the three-dimensional network distorted.

Related literature

For the synthesis of the ligand, see: Yang et al. (2005[Yang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174-2180.]). For the structures of related complexes, see: Wang et al. (2005[Wang, R. H., Han, L., Jiang, F. L., Zhou, Y. F., Yuan, D. Q. & Hong, M. C. (2005). Cryst. Growth Des. 5, 129-135.]). For related structures, see: Zhang et al. (2008[Zhang, W. L., Liu, Y. Y., Ma, J. F., Jiang, H. & Yang, J. (2008). Polyhedron, 27, 3351-3358.]); Zhou et al. (2009[Zhou, S., Liu, B. & Li, C.-B. (2009). Acta Cryst. C65, m107-m109.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C14H8O4)(C2O4)(C10H14N4)2]

  • Mr = 818.60

  • Triclinic, [P \overline 1]

  • a = 9.532 (8) Å

  • b = 9.881 (8) Å

  • c = 11.051 (9) Å

  • α = 104.397 (2)°

  • β = 99.707 (2)°

  • γ = 114.265 (5)°

  • V = 874.8 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.13 × 0.11 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.923

  • 4577 measured reflections

  • 3063 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.01

  • 3063 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Single crystal X-ray crystallographic analysis reveals that (I) crystallizes in triclinic system, space group P-1. It consists of dinuclear units of MnII atoms and the separation between the dinuclear MnII atoms is 4.823 (2) Å. The coordination environment around each MnII atom is shown in Figure 1 with the atom numbering scheme. In the asymmetric unit, there is one MnII atom, one 1,1'-(butane-1,4-diyl)diimidazole (bbi) ligand, half a 3, 3'-biphenyldicarboxylate (3, 3'-bpda) ligand and half an oxalate (ox) anion. The MnII atom is six-coordinated with distorted octahedral coordination geometry by two nitrogen (N1i, N4) atoms of two distinct bbi ligands with Mn - N bond lengths of 2.257 (5) and 2.261 (6) Å and four oxygen atoms (O1ii, O2, O3, O4iii) from two distinct 3, 3'-bpda ligands and one ox ligand with Mn-O bond lengths in the range of 2.234 (4)-2.155 (4) Å, and the coordination angles around Mn1 are in the range of 85.7 (2) to 178.2 (2) ° (Table 1). The ox anion coordinates to two MnII centers via a chelating bis-bidentate coordination mode and serves as a bridging ligand. 3, 3'-bpda ligand adopts a trans conformation and acts as a bis-bidentate bridging ligand, the carboxylate groups are slightly twisted with respect to correspondingly linking phenyl rings with the dihedral angles 6.5 and 9.5°. The dihedral angle between two phenyl rings about the central bond is 0 °, which suggests the two phenyl rings are coplanar, showing a perfect trans conformation, which is different from that observed in metal-organic complexes reported previously (Wang et al., 2005). The MnII atoms are linked by 3, 3'-bpda and ox ligands into wave-like two dimensional layers (Fig. 2). Each bbi ligand coordinates to two MnII centers located in adjacent layers via Mn-N coordination bonds to give rise to a three-dimensional network (Fig. 3).

It is noteworthy that the flexibility of the bbi ligand has a great influence to the framework. In structure of (I), because the methylene can bend freely to each other, the bbi ligand form a "S" shape conformation, which makes the void in the three-dimensional network distorted. This may reduce the surface energy of the framework and result in the uninterpenetrating three-dimensional framework of (I), unlike previously reported relate structures (Zhang et al., 2008; Zhou et al., 2009), which are composed of equivalent mutually interpenetrating networks. The distance between two MnII centers linked by bbi ligand is 12.87 Å, shorter than previously reported relevant structure (Zhang et al., 2008).

Related literature top

For the synthesis of the ligand, see: Yang et al. (2005). For the conformation of related complexes, see: Wang et al. (2005). For related structures, see: Zhang et al. (2008); Zhou et al. (2009).

Experimental top

The ligand bbi was synthesized according to the literature (Yang et al., 2005). For the synthesis of (I), a mixture of 3, 3'-bpda (0.024 g, 0.1 mmol), bbi (0.021 g, 0.1 mmol), MnCl24H2O (0.020 g, 0.1 mmol), and NaOH (0.008 g, 0.2 mmol) in H2O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 180 °C for 72 h to give rise to colorless block crystals of (I), which were collected by filtration. The colorless crystals obtained were washed with water and dried in air. Yield: 0.046 g (56% based on 3, 3'-bpda). IR (KBr pellet, cm-1): 3422(w), 3123(w), 1642(s), 1604(s), 1563(s), 1517(m), 1469(w), 1447(w), 1380(s), 1310(s), 1278(m), 1233(s), 1107(s), 1094(s), 936(s), 826(s), 782(s), 682(m), 657(s), 497(m).

Refinement top

All H atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms[C—H=0.93–0.97%A and Uiso=1.2Ueq].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL(Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the MnII coordination environment of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i) x, -1 + y, -1 + z; (ii) 2-x, 1-y, -z; (iii) 1-x, -y, -z; (iv) -x, -1 - y, -1-z.
[Figure 2] Fig. 2. Perspective view of the two-dimensional layer of (I).
[Figure 3] Fig. 3. View of a three- dimensional framework of (I).
Poly[(µ4-biphenyl-3,3'-dicarboxylato)bis[µ2-1,1'-(butane-1,4- diyl)diimidazole](µ2-oxalato)dimanganese(II)] top
Crystal data top
[Mn2(C14H8O4)(C2O4)(C10H14N4)2]Z = 1
Mr = 818.60F(000) = 422
Triclinic, P1Dx = 1.554 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.532 (8) ÅCell parameters from 1712 reflections
b = 9.881 (8) Åθ = 2.5–27.1°
c = 11.051 (9) ŵ = 0.79 mm1
α = 104.397 (2)°T = 296 K
β = 99.707 (2)°Block, colorless
γ = 114.265 (5)°0.13 × 0.11 × 0.10 mm
V = 874.8 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3063 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 911
Tmin = 0.902, Tmax = 0.923k = 1111
4577 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.7805P]
where P = (Fo2 + 2Fc2)/3
3063 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mn2(C14H8O4)(C2O4)(C10H14N4)2]γ = 114.265 (5)°
Mr = 818.60V = 874.8 (12) Å3
Triclinic, P1Z = 1
a = 9.532 (8) ÅMo Kα radiation
b = 9.881 (8) ŵ = 0.79 mm1
c = 11.051 (9) ÅT = 296 K
α = 104.397 (2)°0.13 × 0.11 × 0.10 mm
β = 99.707 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2495 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.923Rint = 0.020
4577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.01Δρmax = 0.71 e Å3
3063 reflectionsΔρmin = 0.36 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7299 (4)0.9282 (4)0.7716 (3)0.0427 (8)
H10.61810.88150.73750.051*
C20.9736 (4)1.0911 (5)0.8827 (4)0.0633 (11)
H21.06551.18140.94180.076*
C30.9734 (5)0.9615 (5)0.8048 (4)0.0713 (12)
H31.06280.94640.80060.086*
C40.7560 (5)0.6974 (4)0.6402 (3)0.0564 (10)
H4A0.64520.63330.63630.068*
H4B0.81930.65070.67220.068*
C50.7612 (6)0.6915 (5)0.5041 (4)0.0768 (13)
H5A0.87270.75520.50930.092*
H5B0.72850.58270.45170.092*
C60.6637 (6)0.7444 (5)0.4343 (4)0.0816 (14)
H6A0.69570.85300.48630.098*
H6B0.55170.68010.42780.098*
C70.6733 (6)0.7376 (4)0.2962 (4)0.0642 (11)
H7A0.60720.77960.26000.077*
H7B0.78410.80440.30160.077*
C80.4624 (4)0.4587 (4)0.1455 (3)0.0505 (9)
H80.36910.46610.15020.061*
C90.4710 (4)0.3296 (4)0.0757 (3)0.0444 (8)
H90.38250.23190.02370.053*
C100.7130 (4)0.5128 (4)0.1726 (3)0.0423 (8)
H100.82540.56860.20160.051*
C111.0488 (3)0.4969 (3)0.0624 (2)0.0253 (6)
C120.3716 (3)0.0489 (3)0.1928 (2)0.0240 (6)
C130.2848 (3)0.1643 (3)0.3312 (2)0.0262 (6)
C140.1514 (3)0.3102 (3)0.3588 (2)0.0257 (6)
H140.11460.33470.29040.031*
C150.0709 (3)0.4210 (3)0.4862 (3)0.0261 (6)
C160.1284 (3)0.3790 (3)0.5861 (3)0.0344 (7)
H160.07720.45050.67200.041*
C170.2597 (4)0.2338 (3)0.5611 (3)0.0408 (8)
H170.29490.20820.62980.049*
C180.3386 (4)0.1266 (3)0.4339 (3)0.0352 (7)
H180.42760.02930.41690.042*
Mn10.72380 (5)0.21542 (5)0.02078 (4)0.02532 (14)
N10.8196 (3)1.0703 (3)0.8619 (2)0.0365 (6)
N20.8173 (3)0.8581 (3)0.7341 (2)0.0443 (7)
N30.6182 (4)0.5751 (3)0.2074 (2)0.0451 (7)
N40.6292 (3)0.3645 (3)0.0931 (2)0.0365 (6)
O11.1919 (2)0.6036 (2)0.11609 (18)0.0324 (5)
O20.9760 (2)0.3849 (2)0.09977 (17)0.0318 (5)
O30.5021 (2)0.0710 (2)0.17499 (18)0.0326 (5)
O40.3098 (2)0.0764 (2)0.10413 (17)0.0310 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (18)0.0441 (18)0.0401 (18)0.0215 (16)0.0121 (14)0.0027 (15)
C20.039 (2)0.064 (2)0.066 (3)0.0244 (19)0.0084 (18)0.004 (2)
C30.053 (2)0.078 (3)0.079 (3)0.043 (2)0.017 (2)0.001 (2)
C40.082 (3)0.046 (2)0.047 (2)0.041 (2)0.0196 (19)0.0089 (16)
C50.126 (4)0.066 (3)0.044 (2)0.062 (3)0.018 (2)0.0044 (19)
C60.136 (4)0.067 (3)0.052 (3)0.071 (3)0.018 (3)0.004 (2)
C70.111 (3)0.048 (2)0.047 (2)0.052 (2)0.025 (2)0.0127 (17)
C80.054 (2)0.071 (2)0.0406 (19)0.042 (2)0.0193 (17)0.0181 (18)
C90.046 (2)0.0482 (19)0.0398 (18)0.0234 (17)0.0171 (15)0.0127 (15)
C100.0470 (19)0.0421 (18)0.0361 (17)0.0230 (16)0.0115 (14)0.0084 (14)
C110.0246 (14)0.0209 (13)0.0227 (14)0.0074 (12)0.0068 (11)0.0017 (11)
C120.0223 (14)0.0221 (13)0.0213 (14)0.0079 (12)0.0028 (11)0.0048 (11)
C130.0234 (14)0.0239 (13)0.0238 (14)0.0082 (11)0.0036 (11)0.0044 (11)
C140.0272 (14)0.0229 (13)0.0194 (13)0.0084 (12)0.0040 (11)0.0037 (10)
C150.0232 (14)0.0218 (13)0.0237 (14)0.0064 (12)0.0034 (11)0.0032 (11)
C160.0364 (16)0.0276 (15)0.0199 (14)0.0046 (13)0.0030 (12)0.0004 (12)
C170.0437 (18)0.0343 (16)0.0259 (16)0.0031 (14)0.0120 (13)0.0076 (13)
C180.0347 (16)0.0252 (15)0.0270 (15)0.0007 (13)0.0084 (12)0.0041 (12)
Mn10.0227 (2)0.0210 (2)0.0202 (2)0.00355 (17)0.00432 (16)0.00186 (16)
N10.0367 (14)0.0374 (14)0.0309 (13)0.0189 (12)0.0091 (11)0.0032 (11)
N20.0532 (17)0.0477 (16)0.0342 (15)0.0306 (14)0.0137 (13)0.0059 (12)
N30.069 (2)0.0442 (16)0.0321 (14)0.0374 (16)0.0166 (14)0.0108 (12)
N40.0448 (15)0.0349 (14)0.0277 (13)0.0205 (12)0.0116 (11)0.0045 (11)
O10.0249 (10)0.0301 (10)0.0270 (10)0.0030 (9)0.0014 (8)0.0082 (8)
O20.0292 (11)0.0268 (10)0.0242 (10)0.0028 (9)0.0028 (8)0.0073 (8)
O30.0240 (10)0.0249 (10)0.0291 (10)0.0001 (9)0.0022 (8)0.0029 (8)
O40.0338 (11)0.0268 (10)0.0217 (10)0.0076 (9)0.0068 (8)0.0047 (8)
Geometric parameters (Å, º) top
C1—N11.314 (4)C10—H100.9300
C1—N21.339 (4)C11—O11.248 (3)
C1—H10.9300C11—O21.252 (3)
C2—C31.353 (5)C11—C11i1.559 (5)
C2—N11.366 (4)C12—O41.256 (3)
C2—H20.9300C12—O31.257 (3)
C3—N21.352 (5)C12—C131.502 (3)
C3—H30.9300C13—C181.392 (4)
C4—N21.467 (4)C13—C141.390 (4)
C4—C51.501 (5)C14—C151.396 (4)
C4—H4A0.9700C14—H140.9300
C4—H4B0.9700C15—C161.392 (4)
C5—C61.446 (6)C15—C15ii1.500 (5)
C5—H5A0.9700C16—C171.382 (4)
C5—H5B0.9700C16—H160.9300
C6—C71.532 (5)C17—C181.383 (4)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700C18—H180.9300
C7—N31.472 (4)Mn1—O32.1222 (19)
C7—H7A0.9700Mn1—O4iii2.151 (2)
C7—H7B0.9700Mn1—O22.205 (2)
C8—C91.360 (5)Mn1—O1i2.235 (2)
C8—N31.364 (4)Mn1—N42.263 (2)
C8—H80.9300Mn1—N1iv2.263 (2)
C9—N41.368 (4)N1—Mn1v2.263 (2)
C9—H90.9300O1—Mn1i2.235 (2)
C10—N41.311 (4)O4—Mn1iii2.151 (2)
C10—N31.341 (4)
N1—C1—N2112.6 (3)C18—C13—C12120.0 (2)
N1—C1—H1123.7C14—C13—C12120.9 (2)
N2—C1—H1123.7C13—C14—C15122.0 (2)
C3—C2—N1110.2 (3)C13—C14—H14119.0
C3—C2—H2124.9C15—C14—H14119.0
N1—C2—H2124.9C16—C15—C14117.3 (2)
C2—C3—N2106.4 (3)C16—C15—C15ii121.5 (3)
C2—C3—H3126.8C14—C15—C15ii121.2 (3)
N2—C3—H3126.8C17—C16—C15121.7 (2)
N2—C4—C5114.0 (3)C17—C16—H16119.1
N2—C4—H4A108.8C15—C16—H16119.1
C5—C4—H4A108.8C18—C17—C16120.0 (3)
N2—C4—H4B108.8C18—C17—H17120.0
C5—C4—H4B108.8C16—C17—H17120.0
H4A—C4—H4B107.7C17—C18—C13119.9 (3)
C6—C5—C4117.6 (4)C17—C18—H18120.0
C6—C5—H5A107.9C13—C18—H18120.0
C4—C5—H5A107.9O3—Mn1—O4iii99.95 (8)
C6—C5—H5B107.9O3—Mn1—O2165.44 (7)
C4—C5—H5B107.9O4iii—Mn1—O293.16 (7)
H5A—C5—H5B107.2O3—Mn1—O1i92.32 (7)
C5—C6—C7116.0 (4)O4iii—Mn1—O1i167.71 (7)
C5—C6—H6A108.3O2—Mn1—O1i74.74 (7)
C7—C6—H6A108.3O3—Mn1—N493.96 (9)
C5—C6—H6B108.3O4iii—Mn1—N491.30 (9)
C7—C6—H6B108.3O2—Mn1—N492.05 (9)
H6A—C6—H6B107.4O1i—Mn1—N487.11 (9)
N3—C7—C6112.3 (3)O3—Mn1—N1iv85.82 (9)
N3—C7—H7A109.1O4iii—Mn1—N1iv90.21 (9)
C6—C7—H7A109.1O2—Mn1—N1iv87.83 (9)
N3—C7—H7B109.1O1i—Mn1—N1iv91.42 (9)
C6—C7—H7B109.1N4—Mn1—N1iv178.50 (9)
H7A—C7—H7B107.9C1—N1—C2104.3 (3)
C9—C8—N3106.0 (3)C1—N1—Mn1v125.1 (2)
C9—C8—H8127.0C2—N1—Mn1v129.6 (2)
N3—C8—H8127.0C1—N2—C3106.6 (3)
C8—C9—N4110.0 (3)C1—N2—C4127.0 (3)
C8—C9—H9125.0C3—N2—C4126.4 (3)
N4—C9—H9125.0C10—N3—C8106.7 (3)
N4—C10—N3112.3 (3)C10—N3—C7126.2 (3)
N4—C10—H10123.9C8—N3—C7127.0 (3)
N3—C10—H10123.9C10—N4—C9105.0 (3)
O1—C11—O2126.0 (2)C10—N4—Mn1127.0 (2)
O1—C11—C11i117.2 (3)C9—N4—Mn1127.0 (2)
O2—C11—C11i116.8 (3)C11—O1—Mn1i115.06 (17)
O4—C12—O3124.7 (2)C11—O2—Mn1116.18 (16)
O4—C12—C13118.9 (2)C12—O3—Mn1135.35 (17)
O3—C12—C13116.5 (2)C12—O4—Mn1iii143.26 (18)
C18—C13—C14119.1 (2)
N1—C2—C3—N20.1 (5)C6—C7—N3—C10101.2 (4)
N2—C4—C5—C663.2 (5)C6—C7—N3—C878.4 (5)
C4—C5—C6—C7179.6 (4)N3—C10—N4—C90.1 (4)
C5—C6—C7—N361.2 (6)N3—C10—N4—Mn1169.41 (19)
N3—C8—C9—N40.2 (4)C8—C9—N4—C100.0 (4)
O4—C12—C13—C18171.3 (3)C8—C9—N4—Mn1169.3 (2)
O3—C12—C13—C187.9 (4)O3—Mn1—N4—C10151.4 (3)
O4—C12—C13—C149.4 (4)O4iii—Mn1—N4—C10108.5 (3)
O3—C12—C13—C14171.5 (2)O2—Mn1—N4—C1015.3 (3)
C18—C13—C14—C150.9 (4)O1i—Mn1—N4—C1059.3 (3)
C12—C13—C14—C15178.5 (2)O3—Mn1—N4—C915.6 (3)
C13—C14—C15—C160.8 (4)O4iii—Mn1—N4—C984.5 (2)
C13—C14—C15—C15ii178.8 (3)O2—Mn1—N4—C9177.7 (2)
C14—C15—C16—C170.0 (4)O1i—Mn1—N4—C9107.7 (2)
C15ii—C15—C16—C17179.6 (3)O2—C11—O1—Mn1i179.1 (2)
C15—C16—C17—C180.7 (5)C11i—C11—O1—Mn1i0.8 (4)
C16—C17—C18—C130.6 (5)O1—C11—O2—Mn1179.2 (2)
C14—C13—C18—C170.2 (4)C11i—C11—O2—Mn10.9 (4)
C12—C13—C18—C17179.2 (3)O3—Mn1—O2—C1126.9 (4)
N2—C1—N1—C20.0 (4)O4iii—Mn1—O2—C11178.85 (18)
N2—C1—N1—Mn1v169.0 (2)O1i—Mn1—O2—C111.00 (17)
C3—C2—N1—C10.1 (5)N4—Mn1—O2—C1187.44 (19)
C3—C2—N1—Mn1v168.3 (3)N1iv—Mn1—O2—C1191.06 (19)
N1—C1—N2—C30.0 (4)O4—C12—O3—Mn133.5 (4)
N1—C1—N2—C4177.0 (3)C13—C12—O3—Mn1147.35 (19)
C2—C3—N2—C10.1 (5)O4iii—Mn1—O3—C129.5 (3)
C2—C3—N2—C4177.1 (3)O2—Mn1—O3—C12163.4 (3)
C5—C4—N2—C197.7 (4)O1i—Mn1—O3—C12169.7 (2)
C5—C4—N2—C385.9 (5)N4—Mn1—O3—C1282.5 (3)
N4—C10—N3—C80.2 (4)N1iv—Mn1—O3—C1299.0 (3)
N4—C10—N3—C7179.4 (3)O3—C12—O4—Mn1iii102.2 (3)
C9—C8—N3—C100.2 (4)C13—C12—O4—Mn1iii78.7 (3)
C9—C8—N3—C7179.4 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z1; (iii) x+1, y, z; (iv) x, y1, z1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C14H8O4)(C2O4)(C10H14N4)2]
Mr818.60
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.532 (8), 9.881 (8), 11.051 (9)
α, β, γ (°)104.397 (2), 99.707 (2), 114.265 (5)
V3)874.8 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.13 × 0.11 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.902, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
4577, 3063, 2495
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.01
No. of reflections3063
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL(Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The author gratefully acknowledges the fund of Dezhou University.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R. H., Han, L., Jiang, F. L., Zhou, Y. F., Yuan, D. Q. & Hong, M. C. (2005). Cryst. Growth Des. 5, 129–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174–2180.  Web of Science CSD CrossRef Google Scholar
First citationZhang, W. L., Liu, Y. Y., Ma, J. F., Jiang, H. & Yang, J. (2008). Polyhedron, 27, 3351–3358.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, S., Liu, B. & Li, C.-B. (2009). Acta Cryst. C65, m107–m109.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds