organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalene-1,8-dicarb­­oxy­lic anhydride: a monoclinic polymorph

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 6 September 2010; accepted 20 September 2010; online 25 September 2010)

A new type of naphthalene-1,8-dicarb­oxy­lic anhydride, C12H6O3, was synthesized hydro­thermally. Unlike the two previously reported polymorphs, which crystallize in the ortho­rhom­bic space groups P212121 [Shok et al. (1971). Kristallografiya, 16, 500–502; Grigor'eva & Chetkina (1975). Kristallografiya, 20, 1289–1290] and Pbca [Shok & Gol'der (1970). Zh. Strukt. Khim. 11, 939–940], this present structure crystallizes in the monoclinic space group P21/c. In this structure, the planar [total puckering amplitude Q = 0.0362 (15)] mol­ecules lie parallel to each other along the a axis.

Related literature

The previously reported polymorphs crystallize in P212121 (Shok et al., 1971[Shok, L. N., Chetkina, L. A., Neigauz, M. G., Gol'der, G. A., Smelyanskaya, E. M. & Fedorov, Yu. G. (1971). Kristallografiya, 16, 500-502.]; Grigor'eva & Chetkina, 1975[Grigor'eva, L. P. & Chetkina, L. A. (1975). Kristallografiya, 20, 1289-1290.]) and Pbca (Shok & Gol'der, 1970[Shok, L. N. & Gol'der, G. A. (1970). Zh. Strukt. Khim. 11, 939-940.]). For puckering parameters, see: Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6O3

  • Mr = 198.17

  • Monoclinic, P 21 /c

  • a = 3.7687 (1) Å

  • b = 14.5269 (3) Å

  • c = 15.8083 (3) Å

  • β = 94.752 (2)°

  • V = 862.49 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.982

  • 7560 measured reflections

  • 1964 independent reflections

  • 1201 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.00

  • 1964 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,8-Naphthalenedicarboxylate (1,8-NDC), can be used as a rigid building blocks to design multiple metal-organic coordination polymers, as its multiple coordination sites, high symmetry and large conjugated structure. The single-crystal structure of naphthalene-1,8-dicarboxylic anhydride was firstly determined by Shok and Gol'der to be a orthorhombic space group Pbca (Shok, et al., 1970). Later a β-phase was discovered with the space group P212121 (Shok et al., 1971; Grigor'eva & Chetkina, 1975). In this paper, a new type of naphthalene-1,8-dicarboxylic acid anhydride was hydrothermally synthesized and characterized by single-crystal X-ray diffraction with the monoclinic space group P21/c.

The asymmetric unit contains only one independent molecule with the planar [total puckering amplitude Q = 0.0362 (15) (Evans & Boeyens, 1989)] molecules parallel to each other along the a-axis (Fig. 2).

Related literature top

The previously reported structure types crystallize in P212121 (Shok et al., 1971; Grigor'eva & Chetkina, 1975) and Pbca (Shok et al., 1970). For puckering parameters, see: Evans & Boeyens (1989).

Experimental top

Yellow prism-shaped single crystals of Naphthalene-1,8-dicarboxylic acid anhydride were initially obtained in our attempt to prepare metal-organic coordination polymers of 1,8-NDC associated with molybdate. A mixture of 3 mmol of MoO3, 2 mmol of Mn(Ac)2, 2.0 mmol KOH and 1.5 mmol of Naphthalene-1,8-dicarboxylic anhydride, was sealed in a 25 ml Teflonlined bomb at 160°C for 5 days and then cooled to room temperature. A few single crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All of the H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C). The final refinement show that the highest peak in the difference electron density map equals to 0.18 e/Å3 at the distance of 0.65 Å from C5 while the deepest hole equals to -0.17 e/Å3 at the distance of 0.61 Å from C1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: x, y, z]
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a–axis.
Naphthalene-1,8-dicarboxylic anhydride top
Crystal data top
C12H6O3F(000) = 408
Mr = 198.17Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1938 reflections
a = 3.7687 (1) Åθ = 2.6–27.9°
b = 14.5269 (3) ŵ = 0.11 mm1
c = 15.8083 (3) ÅT = 296 K
β = 94.752 (2)°Prism, yellow
V = 862.49 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1964 independent reflections
Radiation source: fine-focus sealed tube1201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.875, Tmax = 0.982k = 1718
7560 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0732P)2]
where P = (Fo2 + 2Fc2)/3
1964 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H6O3V = 862.49 (3) Å3
Mr = 198.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7687 (1) ŵ = 0.11 mm1
b = 14.5269 (3) ÅT = 296 K
c = 15.8083 (3) Å0.20 × 0.10 × 0.10 mm
β = 94.752 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1201 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.982Rint = 0.027
7560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1964 reflectionsΔρmin = 0.17 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.3898 (4)0.64036 (9)0.28567 (8)0.0399 (4)
C10.2469 (4)0.64100 (10)0.19687 (9)0.0486 (4)
C60.5444 (4)0.56205 (10)0.32018 (9)0.0503 (4)
H60.56180.50980.28680.060*
C110.3060 (5)0.87580 (12)0.43612 (10)0.0588 (5)
H110.28780.92790.46960.071*
C40.3603 (3)0.72008 (9)0.33538 (8)0.0356 (4)
C30.1982 (4)0.80075 (10)0.30145 (8)0.0397 (4)
C20.0514 (4)0.80154 (11)0.21286 (9)0.0478 (4)
C80.6540 (4)0.63636 (11)0.45452 (10)0.0544 (5)
H80.74410.63410.51110.065*
C70.6755 (4)0.56069 (12)0.40523 (10)0.0571 (5)
H70.77880.50720.42840.068*
C90.4972 (4)0.71882 (10)0.42179 (8)0.0429 (4)
O30.0835 (3)0.72159 (7)0.16646 (6)0.0557 (3)
C120.1693 (4)0.87738 (11)0.35104 (9)0.0504 (4)
H120.05940.93020.32830.061*
C100.4642 (4)0.79925 (12)0.47005 (9)0.0555 (4)
H100.55340.79980.52670.067*
O20.1003 (4)0.86395 (8)0.17671 (7)0.0747 (4)
O10.2558 (4)0.57887 (8)0.14772 (7)0.0766 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0368 (8)0.0459 (9)0.0377 (8)0.0059 (7)0.0073 (6)0.0044 (6)
C10.0597 (10)0.0486 (9)0.0376 (8)0.0111 (8)0.0043 (7)0.0002 (7)
C60.0511 (10)0.0467 (9)0.0544 (10)0.0002 (7)0.0116 (8)0.0037 (7)
C110.0618 (11)0.0624 (11)0.0531 (10)0.0070 (9)0.0104 (8)0.0178 (9)
C40.0306 (7)0.0447 (8)0.0321 (7)0.0061 (6)0.0063 (6)0.0035 (6)
C30.0357 (8)0.0463 (8)0.0376 (8)0.0043 (7)0.0053 (6)0.0023 (7)
C20.0499 (9)0.0539 (9)0.0391 (8)0.0002 (8)0.0008 (7)0.0061 (7)
C80.0447 (10)0.0789 (12)0.0387 (8)0.0011 (8)0.0020 (7)0.0195 (9)
C70.0506 (11)0.0605 (11)0.0600 (10)0.0071 (8)0.0043 (8)0.0210 (9)
C90.0345 (8)0.0618 (10)0.0325 (7)0.0063 (7)0.0033 (6)0.0027 (7)
O30.0705 (8)0.0593 (7)0.0354 (6)0.0055 (6)0.0075 (5)0.0030 (5)
C120.0495 (10)0.0483 (9)0.0545 (10)0.0006 (7)0.0103 (8)0.0005 (7)
C100.0524 (10)0.0797 (12)0.0339 (8)0.0086 (9)0.0014 (7)0.0075 (8)
O20.0918 (10)0.0725 (8)0.0572 (7)0.0227 (7)0.0100 (7)0.0185 (6)
O10.1232 (12)0.0586 (8)0.0480 (7)0.0138 (7)0.0075 (7)0.0131 (6)
Geometric parameters (Å, º) top
C5—C61.3706 (19)C3—C121.3710 (19)
C5—C41.4090 (18)C3—C21.463 (2)
C5—C11.4613 (19)C2—O21.1922 (17)
C1—O11.1931 (16)C2—O31.3844 (17)
C1—O31.3900 (17)C8—C71.354 (2)
C6—C71.394 (2)C8—C91.4146 (19)
C6—H60.9300C8—H80.9300
C11—C101.351 (2)C7—H70.9300
C11—C121.400 (2)C9—C101.407 (2)
C11—H110.9300C12—H120.9300
C4—C31.4072 (18)C10—H100.9300
C4—C91.4197 (19)
C6—C5—C4120.72 (13)O2—C2—C3126.39 (15)
C6—C5—C1119.88 (13)O3—C2—C3117.26 (13)
C4—C5—C1119.39 (12)C7—C8—C9121.35 (14)
O1—C1—O3116.57 (13)C7—C8—H8119.3
O1—C1—C5126.36 (15)C9—C8—H8119.3
O3—C1—C5117.07 (12)C8—C7—C6120.70 (14)
C5—C6—C7120.05 (14)C8—C7—H7119.7
C5—C6—H6120.0C6—C7—H7119.7
C7—C6—H6120.0C10—C9—C8123.93 (13)
C10—C11—C12120.65 (14)C10—C9—C4118.02 (13)
C10—C11—H11119.7C8—C9—C4118.05 (13)
C12—C11—H11119.7C2—O3—C1125.38 (11)
C3—C4—C5121.58 (12)C3—C12—C11119.71 (14)
C3—C4—C9119.28 (12)C3—C12—H12120.1
C5—C4—C9119.13 (12)C11—C12—H12120.1
C12—C3—C4120.72 (12)C11—C10—C9121.62 (14)
C12—C3—C2119.96 (13)C11—C10—H10119.2
C4—C3—C2119.30 (13)C9—C10—H10119.2
O2—C2—O3116.33 (13)

Experimental details

Crystal data
Chemical formulaC12H6O3
Mr198.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.7687 (1), 14.5269 (3), 15.8083 (3)
β (°) 94.752 (2)
V3)862.49 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7560, 1964, 1201
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.00
No. of reflections1964
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483) for support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrigor'eva, L. P. & Chetkina, L. A. (1975). Kristallografiya, 20, 1289–1290.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShok, L. N., Chetkina, L. A., Neigauz, M. G., Gol'der, G. A., Smelyanskaya, E. M. & Fedorov, Yu. G. (1971). Kristallografiya, 16, 500–502.  Google Scholar
First citationShok, L. N. & Gol'der, G. A. (1970). Zh. Strukt. Khim. 11, 939–940.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds