organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Disulfanedi­yl)di­benzoic acid–N,N′-bis­­(4-pyridyl­meth­yl)ethane­di­thio­amide (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 September 2010; accepted 14 September 2010; online 18 September 2010)

The asymmetric unit of the title co-crystal, C14H14N4S2·C14H10O4S2, comprises a twisted 2,2′-(disulfanedi­yl)dibenzoic acid mol­ecule [dihedral angle between the benzene rings = 83.53 (14)°] and a U-shaped mol­ecule of N,N′-bis­(4-pyridyl­meth­yl)ethane­dithio­amide in which intra­molecular N—H⋯S hydrogen bonds are observed. Two mol­ecules of each form a centrosymmetric ring, with an extended chair conformation, mediated by carbox­yl–pyridine O—H⋯N hydrogen bonds between the carboxylic acid groups of two 2,2′-(disulfanediyl)dibenzoic acid molecules and pyridine-N atoms of two N,N'-bis(4-pyridylmethyl)ethanedithioamide molecules. The tetra­meric aggregates are linked into a supra­molecular chain along the b axis via amide–carbonyl N—H⋯O hydrogen bonds.

Related literature

For related studies on co-crystal formation involving 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.], 2010[Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4S2·C14H10O4S2

  • Mr = 608.75

  • Monoclinic, P 21 /c

  • a = 18.502 (5) Å

  • b = 10.624 (3) Å

  • c = 15.026 (4) Å

  • β = 110.235 (5)°

  • V = 2771.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 98 K

  • 0.38 × 0.26 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 16758 measured reflections

  • 6348 independent reflections

  • 5349 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.156

  • S = 1.13

  • 6348 reflections

  • 373 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1o⋯N4i 0.84 (3) 1.73 (3) 2.565 (4) 168 (4)
O4—H2o⋯N1ii 0.85 (3) 1.76 (3) 2.529 (3) 151 (4)
N2—H1n⋯S2 0.88 (2) 2.37 (2) 2.930 (3) 121 (2)
N3—H2n⋯O3iii 0.88 (3) 2.58 (3) 3.312 (4) 142 (2)
N3—H2n⋯S1 0.88 (3) 2.45 (3) 2.959 (3) 117 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid with various pyridine donors has led to the isolation of a variety of supramolecular motifs (Broker & Tiekink, 2007; Broker et al., 2008; Broker & Tiekink, 2010; Arman et al., 2010). Herein, the structure determination of the 1:1 co-crystal obtained from the co-crystallization of 2,2'-(disulfanediyl)dibenzoic acid with N,N'-bis(4-pyridylmethyl)ethanedithioamide is described. The asymmetric unit of the resulting 1:1 co-crystal contains one molecule of 2,2'-(disulfanediyl)dibenzoic acid, Fig. 1, and N,N'-bis(4-pyridylmethyl)ethanedithioamide, Fig. 2.

In the acid, the expected conformation is observed (Broker & Tiekink, 2007), stabilized in part by two close S···O(carbonyl) interactions, i.e. S3···O1 = 2.759 (2) Å and S4···O3 = 2.687 (3) Å; the dihedral angle formed between the benzene rings = 83.53 (14) °. The molecule of N,N'-bis(4-pyridylmethyl)ethanedithioamide adopts a U-shaped conformation as both pyridyl groups lie to the same side of the molecule with the C2—C1—C6—N2 and N3—C9—C10—C11 torsion angles being 40.8 (4) and 146.4 (3) °, respectively. Intramolecular N—H···S hydrogen bonds are noted, Table 1.

The components of the co-crystal are linked into a supramolecular ring whereby each carboxylic acid group of two 2,2'-(disulfanediyl)dibenzoic acid molecules form an O—H···N hydrogen bond with a pyridine-N of two N,N'-bis(4-pyridylmethyl)ethanedithioamide molecules, Fig. 3 and Table 1. The ring has a extended chair conformation as seen from the view in Fig. 4. Chairs stack to form a supramolecular chain with the main connections between the tetrameric aggregates being amide-N3—H···O3-carbonyl hydrogen bonds, Figs 5 & 6 and Table 1.

Related literature top

For related studies on co-crystal formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007, 2010); Broker et al. (2008); Arman et al. (2010).

Experimental top

Equimolar amounts of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka) and N,N'-bis(4-pyridylmethyl)ethanedithioamide were dissolved in an 1:1 ethanol/chloroform mixture. Crystals were harvested after a few days of slow evaporation.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = yUeq(carrier atom); y = 1.5 for O and y = 1.2 for N. In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (1 1 0).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the co-crystal of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of N,N'-bis(4-pyridylmethyl)ethanedithioamide found in the co-crystal of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular ring in (I). The O—H···N hydrogen bonds are shown as orange dashed lines.
[Figure 4] Fig. 4. Supramolecular ring in (I) viewed side-on to emphasize the chair-like conformation. The O—H···N hydrogen bonds are shown as orange dashed lines.
[Figure 5] Fig. 5. View of the supramolecular chain along the b axis in (I). The O—H···N hydrogen bonds are shown as orange dashed lines. Every second tetrameric aggregate is shown in orange. The N—H···O hydrogen bonds are obscured in this view.
[Figure 6] Fig. 6. Side-on view of the supramolecular chain along the b axis in (I). The O—H···N and N—H···O hydrogen bonds are shown as orange and green dashed lines, respectively. Every second tetrameric aggregate is shown in orange.
2,2'-(Disulfanediyl)dibenzoic acid–N,N'-bis(4-pyridylmethyl)ethanedithioamide (1/1) top
Crystal data top
C14H14N4S2·C14H10O4S2F(000) = 1264
Mr = 608.75Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 11634 reflections
a = 18.502 (5) Åθ = 2.2–40.8°
b = 10.624 (3) ŵ = 0.39 mm1
c = 15.026 (4) ÅT = 98 K
β = 110.235 (5)°Block, red
V = 2771.3 (13) Å30.38 × 0.26 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 2224
16758 measured reflectionsk = 1312
6348 independent reflectionsl = 1912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0595P)2 + 1.5417P]
where P = (Fo2 + 2Fc2)/3
6348 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H14N4S2·C14H10O4S2V = 2771.3 (13) Å3
Mr = 608.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.502 (5) ŵ = 0.39 mm1
b = 10.624 (3) ÅT = 98 K
c = 15.026 (4) Å0.38 × 0.26 × 0.10 mm
β = 110.235 (5)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5349 reflections with I > 2σ(I)
16758 measured reflectionsRint = 0.050
6348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0634 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.40 e Å3
6348 reflectionsΔρmin = 0.30 e Å3
373 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14789 (4)1.09050 (7)0.26162 (6)0.0419 (2)
S20.38384 (5)1.05034 (10)0.43964 (7)0.0577 (3)
S30.28281 (4)0.41538 (6)0.47637 (5)0.03595 (18)
S40.23818 (4)0.28425 (6)0.54351 (5)0.03659 (18)
O10.36687 (12)0.57687 (19)0.40613 (16)0.0439 (5)
O20.45371 (13)0.7063 (3)0.50168 (18)0.0542 (6)
H1o0.469 (2)0.707 (4)0.455 (2)0.081*
O30.18572 (13)0.1116 (2)0.63693 (18)0.0487 (5)
O40.06256 (14)0.06603 (19)0.61426 (18)0.0482 (6)
H2o0.0915 (19)0.016 (3)0.655 (2)0.072*
N10.10469 (15)0.6043 (2)0.23918 (19)0.0389 (6)
N20.22644 (15)0.9846 (3)0.42551 (19)0.0445 (6)
H1n0.2727 (10)0.978 (3)0.4689 (19)0.053*
N30.30049 (14)1.2123 (2)0.3103 (2)0.0401 (6)
H2n0.2547 (10)1.233 (3)0.271 (2)0.048*
N40.48896 (14)1.2348 (3)0.12994 (19)0.0439 (6)
C10.13990 (17)0.8058 (3)0.3642 (2)0.0363 (6)
C20.19777 (17)0.7309 (3)0.3524 (2)0.0389 (6)
H20.25040.74830.38720.047*
C30.17793 (17)0.6311 (3)0.2896 (2)0.0376 (6)
H30.21760.58010.28200.045*
C40.04915 (17)0.6752 (3)0.2516 (2)0.0389 (6)
H40.00300.65540.21630.047*
C50.06427 (16)0.7753 (3)0.3131 (2)0.0367 (6)
H50.02330.82300.32050.044*
C60.16015 (19)0.9164 (3)0.4317 (2)0.0465 (7)
H6A0.11550.97400.41640.056*
H6B0.17170.88580.49740.056*
C70.22516 (16)1.0588 (3)0.3541 (2)0.0365 (6)
C80.30383 (17)1.1141 (3)0.3643 (2)0.0395 (7)
C90.36528 (19)1.2963 (3)0.3191 (3)0.0514 (9)
H9A0.40251.29030.38470.062*
H9B0.34591.38390.30930.062*
C100.40742 (17)1.2706 (3)0.2513 (2)0.0414 (7)
C110.43798 (18)1.3709 (3)0.2185 (3)0.0476 (7)
H110.43061.45430.23650.057*
C120.47942 (19)1.3496 (3)0.1591 (3)0.0509 (8)
H120.50181.41920.13850.061*
C130.45899 (17)1.1392 (3)0.1596 (2)0.0447 (7)
H130.46571.05720.13840.054*
C140.41768 (18)1.1519 (3)0.2208 (3)0.0470 (7)
H140.39691.08020.24110.056*
C150.35166 (15)0.6427 (2)0.5491 (2)0.0336 (6)
C160.29850 (16)0.5498 (2)0.5523 (2)0.0337 (6)
C170.25988 (17)0.5629 (3)0.6169 (2)0.0384 (6)
H170.22350.50110.61930.046*
C180.27440 (19)0.6650 (3)0.6771 (2)0.0460 (7)
H180.24730.67280.72030.055*
C190.32744 (19)0.7565 (3)0.6763 (3)0.0482 (8)
H190.33730.82590.71870.058*
C200.36576 (17)0.7446 (3)0.6123 (2)0.0407 (7)
H200.40240.80670.61120.049*
C210.39214 (16)0.6382 (3)0.4790 (2)0.0352 (6)
C220.13608 (16)0.3115 (3)0.4988 (2)0.0346 (6)
C230.08651 (17)0.2328 (2)0.5271 (2)0.0351 (6)
C240.00720 (18)0.2556 (3)0.4900 (2)0.0418 (7)
H240.02660.20190.50780.050*
C250.02326 (18)0.3530 (3)0.4287 (2)0.0450 (7)
H250.07730.36690.40470.054*
C260.02518 (19)0.4301 (3)0.4026 (2)0.0466 (7)
H260.00460.49870.36100.056*
C270.10406 (17)0.4090 (3)0.4363 (2)0.0415 (7)
H270.13670.46220.41610.050*
C280.11699 (17)0.1310 (3)0.5979 (2)0.0369 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0356 (4)0.0497 (4)0.0434 (5)0.0029 (3)0.0175 (3)0.0003 (3)
S20.0405 (4)0.0839 (6)0.0467 (5)0.0025 (4)0.0127 (4)0.0042 (5)
S30.0454 (4)0.0380 (4)0.0333 (4)0.0046 (3)0.0250 (3)0.0045 (3)
S40.0435 (4)0.0368 (3)0.0357 (4)0.0001 (3)0.0215 (3)0.0020 (3)
O10.0499 (12)0.0498 (12)0.0446 (13)0.0110 (9)0.0321 (11)0.0096 (10)
O20.0440 (12)0.0843 (16)0.0417 (14)0.0211 (11)0.0244 (11)0.0103 (13)
O30.0585 (14)0.0433 (11)0.0520 (14)0.0064 (10)0.0292 (12)0.0153 (10)
O40.0566 (14)0.0402 (11)0.0561 (15)0.0004 (10)0.0300 (12)0.0117 (10)
N10.0505 (14)0.0356 (12)0.0407 (14)0.0035 (10)0.0285 (12)0.0009 (10)
N20.0473 (14)0.0528 (15)0.0324 (14)0.0135 (12)0.0125 (12)0.0055 (12)
N30.0408 (13)0.0452 (13)0.0427 (15)0.0110 (11)0.0253 (12)0.0135 (11)
N40.0355 (12)0.0631 (16)0.0361 (15)0.0073 (11)0.0160 (11)0.0018 (12)
C10.0486 (16)0.0363 (13)0.0296 (15)0.0040 (12)0.0205 (13)0.0023 (11)
C20.0376 (14)0.0440 (15)0.0368 (17)0.0005 (12)0.0152 (13)0.0100 (12)
C30.0442 (15)0.0341 (13)0.0431 (17)0.0045 (11)0.0262 (14)0.0100 (12)
C40.0417 (15)0.0393 (14)0.0399 (17)0.0047 (12)0.0197 (13)0.0018 (12)
C50.0422 (15)0.0372 (13)0.0379 (16)0.0005 (11)0.0231 (13)0.0007 (12)
C60.0573 (19)0.0523 (17)0.0356 (17)0.0154 (15)0.0231 (15)0.0088 (14)
C70.0423 (15)0.0377 (14)0.0346 (16)0.0074 (11)0.0200 (13)0.0092 (12)
C80.0415 (15)0.0451 (15)0.0371 (16)0.0088 (12)0.0202 (13)0.0160 (13)
C90.0545 (19)0.0558 (18)0.058 (2)0.0189 (15)0.0367 (18)0.0220 (16)
C100.0378 (15)0.0480 (16)0.0438 (18)0.0066 (12)0.0210 (14)0.0065 (13)
C110.0480 (17)0.0491 (17)0.051 (2)0.0005 (14)0.0241 (16)0.0003 (15)
C120.0492 (18)0.0589 (19)0.052 (2)0.0012 (15)0.0273 (17)0.0020 (16)
C130.0417 (16)0.0509 (17)0.0427 (18)0.0026 (13)0.0160 (14)0.0075 (14)
C140.0492 (17)0.0469 (16)0.051 (2)0.0080 (13)0.0248 (16)0.0093 (14)
C150.0333 (13)0.0394 (14)0.0313 (15)0.0002 (11)0.0154 (12)0.0004 (11)
C160.0378 (14)0.0370 (13)0.0300 (15)0.0011 (11)0.0165 (12)0.0008 (11)
C170.0444 (15)0.0408 (14)0.0382 (17)0.0022 (12)0.0246 (14)0.0037 (12)
C180.0568 (18)0.0523 (17)0.0413 (18)0.0017 (14)0.0326 (16)0.0079 (14)
C190.0574 (19)0.0482 (17)0.0459 (19)0.0053 (14)0.0267 (16)0.0164 (14)
C200.0425 (15)0.0432 (15)0.0402 (17)0.0062 (12)0.0190 (14)0.0060 (13)
C210.0363 (14)0.0389 (14)0.0347 (16)0.0012 (11)0.0178 (12)0.0008 (12)
C220.0418 (14)0.0375 (13)0.0291 (15)0.0049 (11)0.0182 (12)0.0040 (11)
C230.0470 (15)0.0350 (13)0.0279 (14)0.0040 (11)0.0187 (12)0.0023 (11)
C240.0481 (16)0.0431 (15)0.0391 (17)0.0109 (13)0.0213 (14)0.0024 (13)
C250.0416 (16)0.0552 (18)0.0354 (17)0.0042 (13)0.0099 (14)0.0021 (14)
C260.0497 (17)0.0499 (17)0.0370 (18)0.0036 (14)0.0108 (14)0.0088 (13)
C270.0449 (16)0.0456 (16)0.0359 (17)0.0068 (13)0.0166 (14)0.0065 (13)
C280.0494 (17)0.0323 (13)0.0373 (16)0.0010 (12)0.0255 (14)0.0020 (11)
Geometric parameters (Å, º) top
S1—C71.648 (3)C9—C101.506 (4)
S2—C81.665 (3)C9—H9A0.9900
S3—C161.788 (3)C9—H9B0.9900
S3—S42.0535 (10)C10—C111.375 (4)
S4—C221.796 (3)C10—C141.378 (4)
O1—C211.219 (4)C11—C121.381 (4)
O2—C211.292 (3)C11—H110.9500
O2—H1o0.84 (3)C12—H120.9500
O3—C281.220 (4)C13—C141.390 (4)
O4—C281.312 (3)C13—H130.9500
O4—H2o0.85 (3)C14—H140.9500
N1—C31.334 (4)C15—C201.404 (4)
N1—C41.338 (4)C15—C161.406 (4)
N2—C71.325 (4)C15—C211.490 (4)
N2—C61.455 (4)C16—C171.397 (4)
N2—H1n0.88 (3)C17—C181.379 (4)
N3—C81.310 (4)C17—H170.9500
N3—C91.464 (4)C18—C191.384 (4)
N3—H2n0.88 (3)C18—H180.9500
N4—C131.308 (4)C19—C201.384 (4)
N4—C121.329 (4)C19—H190.9500
C1—C51.382 (4)C20—H200.9500
C1—C21.394 (4)C22—C271.386 (4)
C1—C61.512 (4)C22—C231.411 (4)
C2—C31.382 (4)C23—C241.399 (4)
C2—H20.9500C23—C281.485 (4)
C3—H30.9500C24—C251.371 (4)
C4—C51.373 (4)C24—H240.9500
C4—H40.9500C25—C261.367 (4)
C5—H50.9500C25—H250.9500
C6—H6A0.9900C26—C271.388 (4)
C6—H6B0.9900C26—H260.9500
C7—C81.527 (4)C27—H270.9500
C16—S3—S4103.44 (10)N4—C12—C11122.0 (3)
C22—S4—S3104.86 (10)N4—C12—H12119.0
C21—O2—H1O108 (3)C11—C12—H12119.0
C28—O4—H2O98 (3)N4—C13—C14123.0 (3)
C3—N1—C4118.6 (3)N4—C13—H13118.5
C7—N2—C6124.7 (3)C14—C13—H13118.5
C7—N2—H1N113 (2)C10—C14—C13118.7 (3)
C6—N2—H1N122 (2)C10—C14—H14120.6
C8—N3—C9124.6 (3)C13—C14—H14120.6
C8—N3—H2N117 (2)C20—C15—C16119.1 (3)
C9—N3—H2N118 (2)C20—C15—C21118.8 (2)
C13—N4—C12118.7 (3)C16—C15—C21122.0 (2)
C5—C1—C2118.1 (3)C17—C16—C15119.1 (3)
C5—C1—C6121.5 (3)C17—C16—S3120.9 (2)
C2—C1—C6120.4 (3)C15—C16—S3120.0 (2)
C3—C2—C1119.4 (3)C18—C17—C16120.3 (3)
C3—C2—H2120.3C18—C17—H17119.9
C1—C2—H2120.3C16—C17—H17119.9
N1—C3—C2121.9 (3)C17—C18—C19121.6 (3)
N1—C3—H3119.0C17—C18—H18119.2
C2—C3—H3119.0C19—C18—H18119.2
N1—C4—C5122.9 (3)C20—C19—C18118.5 (3)
N1—C4—H4118.6C20—C19—H19120.7
C5—C4—H4118.6C18—C19—H19120.7
C4—C5—C1119.1 (3)C19—C20—C15121.4 (3)
C4—C5—H5120.4C19—C20—H20119.3
C1—C5—H5120.4C15—C20—H20119.3
N2—C6—C1111.3 (2)O1—C21—O2124.4 (3)
N2—C6—H6A109.4O1—C21—C15121.5 (3)
C1—C6—H6A109.4O2—C21—C15114.1 (3)
N2—C6—H6B109.4C27—C22—C23118.5 (3)
C1—C6—H6B109.4C27—C22—S4121.5 (2)
H6A—C6—H6B108.0C23—C22—S4120.1 (2)
N2—C7—C8113.5 (3)C24—C23—C22118.6 (3)
N2—C7—S1124.9 (2)C24—C23—C28119.9 (2)
C8—C7—S1121.6 (2)C22—C23—C28121.5 (3)
N3—C8—C7113.9 (3)C25—C24—C23122.0 (3)
N3—C8—S2125.8 (2)C25—C24—H24119.0
C7—C8—S2120.3 (2)C23—C24—H24119.0
N3—C9—C10115.3 (3)C26—C25—C24119.1 (3)
N3—C9—H9A108.4C26—C25—H25120.4
C10—C9—H9A108.4C24—C25—H25120.4
N3—C9—H9B108.4C25—C26—C27120.7 (3)
C10—C9—H9B108.4C25—C26—H26119.7
H9A—C9—H9B107.5C27—C26—H26119.7
C11—C10—C14117.9 (3)C22—C27—C26121.1 (3)
C11—C10—C9118.4 (3)C22—C27—H27119.4
C14—C10—C9123.7 (3)C26—C27—H27119.4
C10—C11—C12119.6 (3)O3—C28—O4124.2 (3)
C10—C11—H11120.2O3—C28—C23122.8 (3)
C12—C11—H11120.2O4—C28—C23113.0 (3)
C16—S3—S4—C2288.06 (13)C20—C15—C16—S3177.1 (2)
C5—C1—C2—C31.1 (4)C21—C15—C16—S34.5 (4)
C6—C1—C2—C3179.4 (3)S4—S3—C16—C1720.3 (3)
C4—N1—C3—C21.3 (4)S4—S3—C16—C15158.2 (2)
C1—C2—C3—N10.3 (4)C15—C16—C17—C180.6 (4)
C3—N1—C4—C50.8 (4)S3—C16—C17—C18177.9 (2)
N1—C4—C5—C10.6 (4)C16—C17—C18—C190.5 (5)
C2—C1—C5—C41.5 (4)C17—C18—C19—C200.7 (5)
C6—C1—C5—C4178.9 (3)C18—C19—C20—C150.1 (5)
C7—N2—C6—C173.4 (4)C16—C15—C20—C191.2 (5)
C5—C1—C6—N2139.7 (3)C21—C15—C20—C19177.3 (3)
C2—C1—C6—N240.8 (4)C20—C15—C21—O1157.7 (3)
C6—N2—C7—C8177.5 (3)C16—C15—C21—O120.7 (4)
C6—N2—C7—S12.1 (4)C20—C15—C21—O220.7 (4)
C9—N3—C8—C7168.0 (2)C16—C15—C21—O2160.9 (3)
C9—N3—C8—S211.6 (4)S3—S4—C22—C273.0 (3)
N2—C7—C8—N3162.1 (3)S3—S4—C22—C23177.0 (2)
S1—C7—C8—N318.3 (3)C27—C22—C23—C240.8 (4)
N2—C7—C8—S217.4 (3)S4—C22—C23—C24179.2 (2)
S1—C7—C8—S2162.20 (17)C27—C22—C23—C28176.5 (3)
C8—N3—C9—C1098.3 (4)S4—C22—C23—C283.5 (4)
N3—C9—C10—C11146.4 (3)C22—C23—C24—C251.2 (4)
N3—C9—C10—C1434.1 (5)C28—C23—C24—C25176.1 (3)
C14—C10—C11—C122.0 (5)C23—C24—C25—C260.3 (5)
C9—C10—C11—C12177.6 (3)C24—C25—C26—C271.1 (5)
C13—N4—C12—C111.0 (5)C23—C22—C27—C260.6 (5)
C10—C11—C12—N42.1 (5)S4—C22—C27—C26179.5 (3)
C12—N4—C13—C140.2 (5)C25—C26—C27—C221.5 (5)
C11—C10—C14—C130.8 (5)C24—C23—C28—O3175.5 (3)
C9—C10—C14—C13178.7 (3)C22—C23—C28—O31.7 (4)
N4—C13—C14—C100.3 (5)C24—C23—C28—O43.9 (4)
C20—C15—C16—C171.4 (4)C22—C23—C28—O4178.8 (3)
C21—C15—C16—C17177.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···N4i0.84 (3)1.73 (3)2.565 (4)168 (4)
O4—H2o···N1ii0.85 (3)1.76 (3)2.529 (3)151 (4)
N2—H1n···S20.88 (2)2.37 (2)2.930 (3)121 (2)
N3—H2n···O3iii0.88 (3)2.58 (3)3.312 (4)142 (2)
N3—H2n···S10.88 (3)2.45 (3)2.959 (3)117 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14N4S2·C14H10O4S2
Mr608.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)18.502 (5), 10.624 (3), 15.026 (4)
β (°) 110.235 (5)
V3)2771.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.38 × 0.26 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16758, 6348, 5349
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.156, 1.13
No. of reflections6348
No. of parameters373
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···N4i0.84 (3)1.73 (3)2.565 (4)168 (4)
O4—H2o···N1ii0.85 (3)1.76 (3)2.529 (3)151 (4)
N2—H1n···S20.88 (2)2.37 (2)2.930 (3)121 (2)
N3—H2n···O3iii0.88 (3)2.58 (3)3.312 (4)142 (2)
N3—H2n···S10.88 (3)2.45 (3)2.959 (3)117 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds