metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ4-acetato-κ4O:O:O′:O′)bis­­(μ3-acetato-κ3O:O:O)(μ2-acetato-κ2O:O′)(μ2-acetic acid-κ2O:O′)di-μ-aqua­copper(II)tris­­odium]

aAlan G. MacDiarmid Institute, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: yuexigui@jlu.edu.cn

(Received 19 August 2010; accepted 6 September 2010; online 11 September 2010)

In the title compound, [CuNa3(CH3CO2)5(CH3COOH)(H2O)2]n, the CuII atom lies on an inversion center and is coordinated by four O atoms from four acetate ligands, leading to a square-planar geometry. One NaI atom, lying on an inversion center, is coordinated by four O atoms from four acetate ligands and two bridging water mol­ecules in a distorted octa­hedral geometry. The other NaI atom is coordinated by five O atoms from five acetate ligands and a bridging water mol­ecule. A hy­droxy H atom lies on a twofold rotation axis and is shared by two acetate ligands. The crystal packing exhibits a polymeric layer parallel to (100), which is further stablized by intra­layer O—H⋯O hydrogen bonds. The layers are linked by inter­layer O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Chiari et al. (1988[Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1988). Inorg. Chem. 27, 3246-3248.]); Vives et al. (2003[Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699-704.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa3(C2H3O2)5(C2H4O2)(H2O)2]

  • Mr = 523.81

  • Monoclinic, C 2/c

  • a = 14.571 (6) Å

  • b = 6.768 (3) Å

  • c = 22.653 (10) Å

  • β = 103.426 (19)°

  • V = 2173.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 290 K

  • 0.27 × 0.25 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.752, Tmax = 0.777

  • 10214 measured reflections

  • 2493 independent reflections

  • 2192 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.068

  • S = 1.03

  • 2493 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O1 0.79 2.05 2.835 (2) 172
O7—H7B⋯O1i 0.80 2.03 2.8104 (19) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been increasing interest in the study of copper-containing complexes due to their various coordination styles and potential applications. We report here the crystal structure of the title compound, a new copper complex with acetate.

In the title compound, as shown in Fig. 1, the CuII atom lies on an inversion center and is four-coordinated by four O atoms from four acetate ligands, forming a square-planar coordination geometry. In a comparison with the tiltle compound, the complexes previously reported (Chiari et al., 1988; Vives et al., 2003) show different coordination behaviors of the central CuII ion. The two NaI ions are each coordinated by six O atoms, forming a distorted octahedral coordination geometry. Na1 atom lies on an inversion center, while Na2 atom is on a general position. In the crystal structure, the metal ions, acetate ligands and water molecules are connected each other, forming a two-dimensional network (Fig. 2). The crystal packing is further stabilized by intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Chiari et al. (1988); Vives et al. (2003).

Experimental top

The title compound was prepared as follows: copper acetate dihydrate (2.18 g, 0.01 mol) was added to a solution of glacial acetic acid (3 ml) in 15 ml water. Then 10 ml NaOH (3 mol/L) was added into the mixture. The mixture was heated and stirred for half an hour and then filtered. The filtrate was allowed to stand at room temperature for several days, giving blue block-shaped crystals.

Refinement top

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C). H atoms of water and carboxyl group are located in a difference Fourier map and refined as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, y, -z+1/2.]
[Figure 2] Fig. 2. A view of the two-dimensional structure in the title compound.
Poly[bis(µ4-acetato-κ4O:O:O':O')bis(µ3- acetato-κ3O:O:O)(µ2-acetato- κ2O:O')(µ2-acetic acid-κ2O:O')di-µ-aquacopper(II)trisodium] top
Crystal data top
[CuNa3(C2H3O2)5(C2H4O2)(H2O)2]F(000) = 1076
Mr = 523.81Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8924 reflections
a = 14.571 (6) Åθ = 3.0–27.5°
b = 6.768 (3) ŵ = 1.13 mm1
c = 22.653 (10) ÅT = 290 K
β = 103.426 (19)°Block, blue
V = 2173.0 (16) Å30.27 × 0.25 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2493 independent reflections
Radiation source: rotaton anode2192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.752, Tmax = 0.777k = 88
10214 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.039P)2 + 1.7139P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max = 0.011
142 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[CuNa3(C2H3O2)5(C2H4O2)(H2O)2]V = 2173.0 (16) Å3
Mr = 523.81Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.571 (6) ŵ = 1.13 mm1
b = 6.768 (3) ÅT = 290 K
c = 22.653 (10) Å0.27 × 0.25 × 0.23 mm
β = 103.426 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2493 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2192 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.777Rint = 0.023
10214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2493 reflectionsΔρmin = 0.32 e Å3
142 parameters
Special details top

Experimental. (See detailed section in the paper)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26112 (13)1.3050 (3)0.41200 (9)0.0451 (5)
H1A0.25671.28140.36960.068*
H1B0.28341.43700.42210.068*
H1C0.20001.28930.42060.068*
C20.32852 (10)1.1606 (2)0.44894 (7)0.0252 (3)
C30.49416 (15)1.1930 (3)0.67768 (7)0.0400 (4)
H3A0.49431.32320.69450.060*
H3B0.54621.11880.70100.060*
H3C0.43611.12770.67880.060*
C40.50335 (11)1.2077 (2)0.61301 (6)0.0237 (3)
C50.25974 (15)0.7130 (4)0.69424 (11)0.0614 (6)
H5A0.22590.59660.70100.092*
H5B0.26580.71510.65290.092*
H5C0.22590.82820.70200.092*
C60.35605 (13)0.7116 (3)0.73620 (8)0.0352 (4)
Cu10.50001.00000.50000.01852 (8)
Na10.50000.50000.50000.02776 (19)
Na20.50180 (5)0.70788 (10)0.62598 (3)0.03245 (16)
O10.30176 (9)0.99791 (19)0.46272 (7)0.0430 (3)
O20.41529 (7)1.21412 (16)0.46414 (5)0.0244 (2)
O30.49001 (8)1.04618 (17)0.58292 (5)0.0282 (2)
O40.52322 (10)1.36734 (18)0.59343 (5)0.0374 (3)
O50.42574 (9)0.6909 (2)0.71094 (6)0.0455 (3)
H50.50000.69360.75000.068*
O60.36605 (10)0.7272 (3)0.79096 (6)0.0517 (4)
O70.37443 (8)0.67127 (19)0.53741 (6)0.0382 (3)
H7B0.32910.61110.54100.057*
H7A0.35180.76570.51910.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (9)0.0591 (13)0.0409 (10)0.0154 (9)0.0033 (7)0.0106 (9)
C20.0234 (7)0.0315 (8)0.0213 (7)0.0002 (6)0.0061 (5)0.0000 (6)
C30.0630 (12)0.0376 (10)0.0218 (8)0.0002 (9)0.0148 (8)0.0001 (7)
C40.0287 (7)0.0242 (7)0.0184 (6)0.0026 (6)0.0058 (5)0.0003 (6)
C50.0415 (11)0.0837 (18)0.0532 (13)0.0000 (11)0.0011 (10)0.0001 (12)
C60.0386 (9)0.0332 (9)0.0328 (8)0.0008 (7)0.0063 (7)0.0024 (7)
Cu10.02176 (13)0.01720 (13)0.01633 (12)0.00190 (9)0.00390 (9)0.00037 (9)
Na10.0418 (5)0.0207 (4)0.0213 (4)0.0071 (4)0.0084 (4)0.0001 (3)
Na20.0433 (4)0.0303 (3)0.0235 (3)0.0038 (3)0.0071 (3)0.0006 (3)
O10.0336 (6)0.0445 (8)0.0488 (8)0.0151 (5)0.0055 (6)0.0105 (6)
O20.0228 (5)0.0218 (5)0.0271 (5)0.0013 (4)0.0026 (4)0.0006 (4)
O30.0426 (6)0.0230 (5)0.0205 (5)0.0008 (5)0.0102 (4)0.0001 (4)
O40.0617 (8)0.0254 (6)0.0243 (5)0.0066 (6)0.0084 (5)0.0017 (5)
O50.0401 (7)0.0691 (10)0.0281 (6)0.0009 (7)0.0095 (5)0.0013 (6)
O60.0430 (7)0.0822 (12)0.0316 (7)0.0048 (7)0.0122 (6)0.0004 (7)
O70.0270 (6)0.0361 (7)0.0502 (7)0.0062 (5)0.0060 (5)0.0030 (6)
Geometric parameters (Å, º) top
C1—C21.496 (2)Cu1—O31.9426 (13)
C1—H1A0.9600Cu1—O21.9540 (12)
C1—H1B0.9600Cu1—Na1i3.3842 (14)
C1—H1C0.9600Cu1—Na2ii3.4669 (13)
C2—O11.232 (2)Na1—O4iii2.2512 (14)
C2—O21.2831 (18)Na1—O2iii2.3371 (13)
C3—C41.505 (2)Na1—O72.4759 (15)
C3—H3A0.9600Na1—Na2iv3.1765 (13)
C3—H3B0.9600Na2—O6v2.3627 (18)
C3—H3C0.9600Na2—O72.4088 (16)
C4—O41.228 (2)Na2—O52.4362 (17)
C4—O31.2792 (19)Na2—O4iii2.4618 (17)
C5—C61.501 (3)Na2—O32.4792 (16)
C5—H5A0.9600Na2—O2ii2.6554 (15)
C5—H5B0.9600O5—H51.2286
C5—H5C0.9600O7—H7B0.7965
C6—O61.220 (2)O7—H7A0.7910
C6—O51.284 (2)
C2—C1—H1A109.5O2ii—Na1—O782.30 (5)
C2—C1—H1B109.5O2iii—Na1—O797.70 (5)
H1A—C1—H1B109.5O7iv—Na1—O7180.0
C2—C1—H1C109.5O4ii—Na1—Na2iv50.50 (4)
H1A—C1—H1C109.5O4iii—Na1—Na2iv129.50 (4)
H1B—C1—H1C109.5O2ii—Na1—Na2iv124.93 (3)
O1—C2—O2122.32 (14)O2iii—Na1—Na2iv55.07 (3)
O1—C2—C1121.35 (15)O7iv—Na1—Na2iv48.52 (3)
O2—C2—C1116.31 (15)O7—Na1—Na2iv131.48 (4)
C4—C3—H3A109.5O4ii—Na1—Cu1iii113.51 (3)
C4—C3—H3B109.5O4iii—Na1—Cu1iii66.49 (3)
H3A—C3—H3B109.5O2ii—Na1—Cu1iii145.89 (3)
C4—C3—H3C109.5O2iii—Na1—Cu1iii34.11 (3)
H3A—C3—H3C109.5O7iv—Na1—Cu1iii62.08 (3)
H3B—C3—H3C109.5O7—Na1—Cu1iii117.92 (3)
O4—C4—O3125.37 (14)Na2iv—Na1—Cu1iii63.708 (19)
O4—C4—C3119.44 (15)O6v—Na2—O7175.43 (6)
O3—C4—C3115.18 (14)O6v—Na2—O579.03 (6)
C6—C5—H5A109.5O7—Na2—O5104.44 (6)
C6—C5—H5B109.5O6v—Na2—O4iii98.84 (6)
H5A—C5—H5B109.5O7—Na2—O4iii77.35 (5)
C6—C5—H5C109.5O5—Na2—O4iii107.75 (5)
H5A—C5—H5C109.5O6v—Na2—O3103.39 (6)
H5B—C5—H5C109.5O7—Na2—O378.33 (5)
O6—C6—O5122.86 (17)O5—Na2—O3110.60 (5)
O6—C6—C5121.13 (18)O4iii—Na2—O3138.49 (5)
O5—C6—C5116.00 (17)O6v—Na2—O2ii99.73 (6)
O3ii—Cu1—O3180.0O7—Na2—O2ii77.30 (5)
O3ii—Cu1—O2ii95.78 (5)O5—Na2—O2ii171.22 (5)
O3—Cu1—O2ii84.22 (5)O4iii—Na2—O2ii81.02 (5)
O3ii—Cu1—O284.22 (5)O3—Na2—O2ii61.06 (4)
O3—Cu1—O295.78 (5)C2—O2—Cu1112.95 (10)
O2ii—Cu1—O2180.00 (6)C2—O2—Na1i137.32 (10)
O3ii—Cu1—Na1i99.26 (3)Cu1—O2—Na1i103.76 (5)
O3—Cu1—Na1i80.74 (3)C2—O2—Na2ii116.47 (9)
O2ii—Cu1—Na1i137.87 (3)Cu1—O2—Na2ii96.36 (5)
O2—Cu1—Na1i42.13 (3)Na1i—O2—Na2ii78.74 (4)
O3ii—Cu1—Na2ii44.26 (4)C4—O3—Cu1128.07 (10)
O3—Cu1—Na2ii135.74 (4)C4—O3—Na2126.27 (10)
O2ii—Cu1—Na2ii130.43 (4)Cu1—O3—Na2102.59 (5)
O2—Cu1—Na2ii49.57 (4)C4—O4—Na1i133.95 (10)
Na1i—Cu1—Na2ii55.23 (2)C4—O4—Na2i131.20 (11)
O4ii—Na1—O4iii180.0Na1i—O4—Na2i84.62 (5)
O4ii—Na1—O2ii87.05 (5)C6—O5—Na2154.01 (12)
O4iii—Na1—O2ii92.95 (5)C6—O5—H5109.4
O4ii—Na1—O2iii92.95 (5)Na2—O5—H594.7
O4iii—Na1—O2iii87.05 (5)C6—O6—Na2v133.48 (13)
O2ii—Na1—O2iii180.0Na2—O7—Na181.12 (5)
O4ii—Na1—O7iv80.02 (5)Na2—O7—H7B117.7
O4iii—Na1—O7iv99.98 (5)Na1—O7—H7B119.5
O2ii—Na1—O7iv97.70 (5)Na2—O7—H7A120.0
O2iii—Na1—O7iv82.30 (5)Na1—O7—H7A116.7
O4ii—Na1—O799.98 (5)H7B—O7—H7A102.2
O4iii—Na1—O780.02 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O10.792.052.835 (2)172
O7—H7B···O1vi0.802.032.8104 (19)168
Symmetry code: (vi) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[CuNa3(C2H3O2)5(C2H4O2)(H2O)2]
Mr523.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)14.571 (6), 6.768 (3), 22.653 (10)
β (°) 103.426 (19)
V3)2173.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.752, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
10214, 2493, 2192
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.068, 1.03
No. of reflections2493
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O10.792.052.835 (2)172
O7—H7B···O1i0.802.032.8104 (19)168
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1988). Inorg. Chem. 27, 3246–3248.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds