metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1234-m1235

Poly[[di­aqua­bis­­(μ3-isonicotinato-κ3N:O:O′)bis­­(μ2-isonicotinato-κ2N:O)gadolinium(III)disiliver(I)] nitrate monohydrate]

aInstitute of Materials Physical Chemistry, and The Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China
*Correspondence e-mail: lqfan@hqu.edu.cn

(Received 19 August 2010; accepted 5 September 2010; online 11 September 2010)

In the title compound, {[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2O}n, the GdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water mol­ecules in a distorted square anti­prismatic geometry. Two AgI ions are each bonded to two N atoms from two isonicotinate ligands in a linear or bow-like fashion [N—Ag—N angles = 178.6 (2) and 147.1 (2)°]. These metal ions are connected by the isonicotin­ate ligands into a layer parallel to (010). O—H⋯O hydrogen bonds donated by the coordinated and uncoordinated water mol­ecules and intra­layer ππ stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.551 (4) and 3.555 (4) Å] are observed. The layers inter­act with each other by inter­layer Ag⋯O(aqua) contacts [2.731 (4) Å] and ππ stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.466 (3) and 3.516 (3) Å], resulting in the formation of a three-dimensional supra­molecular structure.

Related literature

For general background to the structures and properties of lanthanide–transition metal coordination polymers, see: Cheng et al. (2007[Cheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem. 46, 10534-10538.], 2008[Cheng, J.-W., Zheng, S.-T. & Yang, G.-Y. (2008). Inorg. Chem. 47, 4930-4935.]); Fan & Wu (2010[Fan, L.-Q. & Wu, J.-H. (2010). Acta Cryst. E66, m240.]); Fang et al. (2009[Fang, M., Zhao, B., Zuo, Y., Chen, J., Shi, W., Liang, J. & Cheng, P. (2009). Dalton Trans. pp. 7765-7770.]); Luo et al. (2007[Luo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des. 7, 851-853.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2O

  • Mr = 977.46

  • Monoclinic, P 21 /c

  • a = 16.889 (8) Å

  • b = 24.744 (11) Å

  • c = 6.750 (3) Å

  • β = 96.240 (9)°

  • V = 2804 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.80 mm−1

  • T = 293 K

  • 0.30 × 0.12 × 0.08 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.703, Tmax = 1.000

  • 16445 measured reflections

  • 4859 independent reflections

  • 4370 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.129

  • S = 1.08

  • 4859 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O1 2.357 (4)
Gd1—O2i 2.465 (4)
Gd1—O3 2.383 (4)
Gd1—O5 2.393 (4)
Gd1—O7 2.399 (4)
Gd1—O8i 2.386 (4)
Gd1—O9 2.454 (4)
Gd1—O10 2.533 (4)
Ag1—N1 2.144 (5)
Ag1—N4ii 2.147 (5)
Ag2—N2iii 2.189 (5)
Ag2—N3 2.199 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O6 0.85 2.13 2.771 (7) 132
O9—H9B⋯O2iv 0.85 2.03 2.811 (6) 153
O10—H10A⋯O6v 0.85 2.12 2.954 (6) 165
O10—H10C⋯O4 0.85 1.84 2.662 (6) 162
O14—H14B⋯O12vi 0.85 2.27 2.960 (9) 139
O14—H14C⋯O13vii 0.85 2.01 2.779 (10) 151
Symmetry codes: (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z+1; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, investigations on the design and synthesis of lanthanide-transition metal coordination polymers have attracted great interest not only for their fascinating structural topologies but also for their potential applications in magnetism, luminescence materials, molecular adsorption, and bimetallic catalysis (Cheng et al., 2007, 2008; Fan & Wu, 2010; Fang et al., 2009; Luo et al., 2007). Isonicotinic acid, which acts as a multidentate ligand possessing N and O donor atoms, is utilized to construct lanthanide-transition metal coordination polymers via the carboxylate group coordinating to lanthanide ions and N atom bonding to transition metal ions, such as AgI or CuI ions. We report herein the crystal structure of the title 4d-4f compound by the reaction of Gd2O3, isonicotinic acid and AgNO3 under hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of the title compound contains one GdIII ion, two AgI ions, four isonicotinate ligands, two coordinated water molecules, one nitrate ion, and one uncoordinated water molecule. The GdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water molecules in a distorted square antiprismatic geometry, with the Gd—O bond lengths and O—Gd—O bond angles being from 2.356 (4) to 2.534 (4) Å and 71.22 (13) to 145.29 (14)°, respectively (Table 1). Each AgI ion is bonded to two N atoms from two different isonicotinate ligands in a linear or bow-like fashion, with the Ag—N bond lengths of 2.145 (5)–2.201 (5) Å and N—Ag—N bond angles of 178.5 (2)° and 147.30 (19) (Table 1). Adjacent Gd centers are connected by two carboxylate groups from two different isonicotinate ligands, forming one-dimensional chains, which are further linked by AgI ions to construct two-dimensional layers. The layers are stabilized by O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules (Table 2) and intralayer ππ stacking interactions between the pyridine rings, with centroid–centroid distances of 3.551 (4) and 3.555 (4) Å (Spek, 2009. The layers interact each other by interlayer Ag2···O10(aqua) contacts [2.731 (4) Å] and ππ stacking interactions between the pyridine rings from two neighboring layers, with centroid–centroid distances of 3.466 (3) and 3.516 (3) Å, which result in the formation of a three-dimensional supramolecular structure (Fig. 2).

Related literature top

For general background to the structures and properties of lanthanide–transition metal coordination polymers, see: Cheng et al. (2007, 2008); Fan & Wu (2010); Fang et al. (2009); Luo et al. (2007).

Experimental top

A mixture of Gd2O3 (0.181 g, 0.5 mmol), isonicotinic acid (0.123 g, 1 mmol), AgNO3 (0.170 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 7 d and then cooled to room temperature at a rate of 0.2 K h-1. The colorless crystals obtained were washed with water and dried in air (yield 32% based on Gd).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.85 Å and Uiso(H) = 1.2Ueq(C, O). The highest residual electron density was found 1.18 Å from O10 and the deepest hole 0.81 Å from Gd1.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Additional symmetry related atoms are included to complete the coordination geomtry around the Gd atom. [Symmetry code: (A) x, 1/2-y, 1/2+z.]
[Figure 2] Fig. 2. The three-dimensional supramolecular structure viewed along the c axis, formed through weak interlayer Ag···O contacts and ππ stacking interactions (dashed lines).
Poly[[diaquabis(µ3-isonicotinato-κ3N:O:O')bis(µ2- isonicotinato-κ2N:O)gadolinium(III)disiliver(I)] nitrate monohydrate] top
Crystal data top
[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2OF(000) = 1884
Mr = 977.46Dx = 2.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6663 reflections
a = 16.889 (8) Åθ = 3.0–27.5°
b = 24.744 (11) ŵ = 3.80 mm1
c = 6.750 (3) ÅT = 293 K
β = 96.240 (9)°Block, colorless
V = 2804 (2) Å30.30 × 0.12 × 0.08 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4859 independent reflections
Radiation source: fine-focus sealed tube4370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 2019
Tmin = 0.703, Tmax = 1.000k = 2829
16445 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.0116P]
where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.002
416 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2OV = 2804 (2) Å3
Mr = 977.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.889 (8) ŵ = 3.80 mm1
b = 24.744 (11) ÅT = 293 K
c = 6.750 (3) Å0.30 × 0.12 × 0.08 mm
β = 96.240 (9)°
Data collection top
Rigaku Mercury CCD
diffractometer
4859 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
4370 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 1.000Rint = 0.032
16445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 1.38 e Å3
4859 reflectionsΔρmin = 1.27 e Å3
416 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.769985 (15)0.162835 (10)0.61682 (4)0.01965 (14)
Ag11.27129 (3)0.27098 (2)0.49007 (9)0.04268 (18)
Ag20.26502 (3)0.00962 (2)0.40147 (9)0.04637 (19)
O10.8613 (2)0.23037 (17)0.5464 (8)0.0399 (11)
O20.8530 (2)0.31392 (15)0.4284 (6)0.0255 (8)
O30.8850 (2)0.10782 (16)0.6024 (6)0.0309 (9)
O40.9135 (3)0.05792 (18)0.8754 (6)0.0342 (10)
O50.6664 (3)0.1044 (2)0.4728 (6)0.0412 (12)
O60.6514 (3)0.08461 (19)0.1515 (7)0.0380 (11)
O70.6853 (2)0.22994 (18)0.4473 (7)0.0394 (11)
O80.6733 (2)0.31472 (17)0.3362 (6)0.0305 (9)
O90.7837 (3)0.1483 (2)0.2626 (6)0.0419 (12)
H9A0.76610.11610.25020.050*
H9B0.81570.16390.19240.050*
O100.7581 (2)0.08017 (15)0.8329 (6)0.0293 (9)
H10C0.80590.07170.87220.035*
H10A0.73530.08170.93900.035*
O110.2993 (4)0.0486 (3)0.8246 (9)0.076 (2)
O120.2422 (4)0.0839 (3)1.0578 (9)0.084 (2)
O130.2575 (5)0.1295 (3)0.7976 (11)0.083 (2)
O141.2728 (4)0.3429 (2)0.9058 (12)0.0660 (18)
H14C1.28160.34321.03220.08 (4)*
H14B1.24060.36190.82920.095*
N11.1448 (3)0.2720 (2)0.4982 (7)0.0295 (11)
N21.1488 (3)0.0291 (2)0.4987 (8)0.0319 (12)
N30.3875 (3)0.0365 (2)0.3745 (8)0.0317 (11)
N40.3979 (3)0.2720 (2)0.4807 (8)0.0326 (12)
N50.2680 (4)0.0875 (3)0.8983 (11)0.0524 (17)
C11.1038 (3)0.3187 (3)0.4945 (9)0.0300 (13)
H1A1.13210.35100.49700.036*
C21.0215 (3)0.3210 (2)0.4872 (9)0.0254 (12)
H2A0.99520.35410.48040.030*
C30.9793 (3)0.2732 (2)0.4900 (8)0.0192 (11)
C41.0219 (3)0.2248 (2)0.4990 (9)0.0244 (12)
H4A0.99510.19200.50200.029*
C51.1036 (4)0.2255 (3)0.5035 (9)0.0306 (13)
H5A1.13120.19290.51030.037*
C60.8906 (3)0.2727 (2)0.4838 (7)0.0202 (11)
C71.0969 (4)0.0607 (2)0.3909 (10)0.0319 (13)
H7A1.10930.07240.26700.038*
C81.0253 (4)0.0770 (2)0.4541 (9)0.0286 (13)
H8A0.98970.09800.37230.034*
C91.0080 (3)0.0614 (2)0.6418 (8)0.0209 (11)
C101.0615 (3)0.0291 (2)0.7561 (9)0.0299 (13)
H10B1.05140.01800.88260.036*
C111.1301 (4)0.0136 (2)0.6792 (10)0.0325 (14)
H11A1.16540.00890.75580.039*
C120.9283 (3)0.0766 (2)0.7152 (8)0.0229 (12)
C130.4339 (4)0.0597 (3)0.5286 (9)0.0327 (14)
H13A0.41270.06430.64900.039*
C140.5102 (4)0.0765 (2)0.5146 (10)0.0326 (14)
H14A0.54060.09100.62500.039*
C150.5418 (3)0.0717 (2)0.3342 (8)0.0219 (11)
C160.4947 (4)0.0496 (2)0.1764 (8)0.0294 (13)
H16A0.51390.04620.05300.035*
C170.4192 (4)0.0327 (3)0.2018 (10)0.0328 (14)
H17A0.38830.01780.09300.039*
C180.6282 (3)0.0883 (2)0.3187 (8)0.0231 (12)
C190.4396 (3)0.2255 (2)0.4717 (9)0.0288 (13)
H19A0.41250.19280.47410.035*
C200.5204 (3)0.2245 (2)0.4593 (8)0.0234 (12)
H20A0.54760.19180.45970.028*
C210.4397 (4)0.3187 (3)0.4771 (9)0.0323 (14)
H21A0.41300.35110.49120.039*
C220.5186 (3)0.3206 (2)0.4539 (9)0.0260 (12)
H22A0.54410.35360.44340.031*
C230.5604 (3)0.2726 (2)0.4462 (7)0.0202 (11)
C240.6471 (3)0.2728 (2)0.4095 (8)0.0232 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0133 (2)0.0206 (2)0.0256 (2)0.00073 (9)0.00462 (13)0.00042 (9)
Ag10.0119 (3)0.0577 (4)0.0593 (4)0.0001 (2)0.0077 (2)0.0006 (3)
Ag20.0197 (3)0.0572 (4)0.0642 (4)0.0012 (2)0.0137 (2)0.0041 (3)
O10.016 (2)0.032 (2)0.071 (3)0.0077 (18)0.004 (2)0.019 (2)
O20.0152 (19)0.028 (2)0.033 (2)0.0050 (17)0.0015 (16)0.0059 (17)
O30.027 (2)0.030 (2)0.037 (2)0.0107 (18)0.0090 (19)0.0024 (18)
O40.033 (2)0.042 (3)0.029 (2)0.016 (2)0.0073 (19)0.0101 (19)
O50.036 (3)0.056 (3)0.030 (2)0.026 (2)0.002 (2)0.001 (2)
O60.029 (2)0.054 (3)0.033 (2)0.010 (2)0.0116 (19)0.005 (2)
O70.016 (2)0.041 (3)0.061 (3)0.0114 (19)0.004 (2)0.015 (2)
O80.019 (2)0.035 (2)0.039 (2)0.0045 (18)0.0097 (18)0.0090 (19)
O90.041 (3)0.063 (3)0.023 (2)0.022 (2)0.0083 (19)0.002 (2)
O100.026 (2)0.025 (2)0.038 (2)0.0025 (18)0.0141 (18)0.0036 (17)
O110.051 (4)0.112 (6)0.063 (4)0.029 (4)0.002 (3)0.033 (4)
O120.065 (4)0.143 (7)0.042 (3)0.047 (4)0.002 (3)0.002 (3)
O130.102 (6)0.068 (5)0.081 (4)0.019 (4)0.020 (4)0.007 (4)
O140.062 (4)0.038 (3)0.098 (6)0.002 (3)0.007 (4)0.001 (3)
N10.015 (2)0.042 (3)0.032 (3)0.001 (2)0.005 (2)0.000 (2)
N20.018 (3)0.034 (3)0.045 (3)0.002 (2)0.009 (2)0.006 (2)
N30.016 (2)0.032 (3)0.047 (3)0.002 (2)0.003 (2)0.002 (2)
N40.018 (3)0.036 (3)0.045 (3)0.001 (2)0.012 (2)0.003 (2)
N50.030 (3)0.063 (4)0.064 (5)0.002 (3)0.006 (3)0.018 (4)
C10.016 (3)0.030 (3)0.044 (3)0.008 (3)0.006 (3)0.000 (3)
C20.015 (3)0.023 (3)0.039 (3)0.001 (2)0.008 (2)0.005 (2)
C30.014 (3)0.022 (3)0.022 (3)0.001 (2)0.002 (2)0.002 (2)
C40.016 (3)0.023 (3)0.034 (3)0.000 (2)0.003 (2)0.001 (2)
C50.024 (3)0.031 (3)0.037 (3)0.007 (3)0.005 (3)0.003 (3)
C60.016 (3)0.027 (3)0.018 (2)0.004 (2)0.003 (2)0.004 (2)
C70.028 (3)0.031 (3)0.039 (3)0.002 (3)0.012 (3)0.002 (3)
C80.023 (3)0.024 (3)0.040 (3)0.004 (2)0.006 (3)0.005 (2)
C90.020 (3)0.021 (3)0.022 (3)0.001 (2)0.001 (2)0.001 (2)
C100.019 (3)0.034 (3)0.037 (3)0.003 (3)0.007 (3)0.003 (3)
C110.021 (3)0.032 (3)0.044 (4)0.010 (3)0.001 (3)0.003 (3)
C120.022 (3)0.022 (3)0.025 (3)0.004 (2)0.006 (2)0.003 (2)
C130.034 (3)0.034 (3)0.032 (3)0.001 (3)0.009 (3)0.006 (3)
C140.031 (3)0.030 (3)0.038 (3)0.008 (3)0.009 (3)0.008 (3)
C150.020 (3)0.013 (2)0.033 (3)0.001 (2)0.004 (2)0.002 (2)
C160.031 (3)0.033 (3)0.023 (3)0.003 (3)0.001 (2)0.000 (2)
C170.022 (3)0.036 (3)0.039 (3)0.007 (3)0.000 (3)0.003 (3)
C180.024 (3)0.021 (3)0.024 (3)0.006 (2)0.000 (2)0.002 (2)
C190.018 (3)0.030 (3)0.038 (3)0.004 (2)0.002 (3)0.003 (2)
C200.021 (3)0.028 (3)0.022 (3)0.002 (2)0.004 (2)0.001 (2)
C210.023 (3)0.028 (3)0.048 (4)0.004 (3)0.015 (3)0.002 (3)
C220.021 (3)0.024 (3)0.032 (3)0.004 (2)0.003 (2)0.001 (2)
C230.017 (3)0.029 (3)0.015 (2)0.003 (2)0.005 (2)0.002 (2)
C240.018 (3)0.028 (3)0.025 (3)0.001 (2)0.007 (2)0.003 (2)
Geometric parameters (Å, º) top
Gd1—O12.357 (4)N4—C191.354 (8)
Gd1—O2i2.465 (4)N4—Ag1iii2.147 (5)
Gd1—O32.383 (4)C1—C21.388 (8)
Gd1—O52.393 (4)C1—H1A0.9300
Gd1—O72.399 (4)C2—C31.383 (8)
Gd1—O8i2.386 (4)C2—H2A0.9300
Gd1—O92.454 (4)C3—C41.395 (7)
Gd1—O102.533 (4)C3—C61.494 (7)
Ag1—N12.144 (5)C4—C51.377 (8)
Ag1—N4ii2.147 (5)C4—H4A0.9300
Ag2—N2iii2.189 (5)C5—H5A0.9300
Ag2—N32.199 (5)C7—C81.385 (9)
O1—C61.252 (7)C7—H7A0.9300
O2—C61.238 (7)C8—C91.386 (8)
O2—Gd1iv2.465 (4)C8—H8A0.9300
O3—C121.261 (7)C9—C101.378 (8)
O4—C121.227 (7)C9—C121.530 (8)
O5—C181.229 (7)C10—C111.374 (8)
O6—C181.238 (7)C10—H10B0.9300
O7—C241.253 (7)C11—H11A0.9300
O8—C241.251 (7)C13—C141.367 (9)
O8—Gd1iv2.386 (4)C13—H13A0.9300
O9—H9A0.8500C14—C151.387 (8)
O9—H9B0.8500C14—H14A0.9300
O10—H10C0.8500C15—C161.371 (8)
O10—H10A0.8500C15—C181.531 (8)
O11—N51.229 (9)C16—C171.370 (9)
O12—N51.208 (9)C16—H16A0.9300
O13—N51.244 (10)C17—H17A0.9300
O14—H14C0.8500C19—C201.377 (8)
O14—H14B0.8500C19—H19A0.9300
N1—C11.345 (8)C20—C231.377 (8)
N1—C51.348 (8)C20—H20A0.9300
N2—C71.331 (8)C21—C221.359 (9)
N2—C111.348 (8)C21—H21A0.9300
N2—Ag2ii2.189 (5)C22—C231.384 (8)
N3—C171.338 (8)C22—H22A0.9300
N3—C131.359 (8)C23—C241.512 (7)
N4—C211.354 (8)
O1—Gd1—O380.95 (15)C2—C3—C6121.5 (5)
O1—Gd1—O8i117.84 (16)C4—C3—C6120.4 (5)
O3—Gd1—O8i140.74 (14)C5—C4—C3120.1 (5)
O1—Gd1—O5144.27 (17)C5—C4—H4A120.0
O3—Gd1—O5101.65 (17)C3—C4—H4A120.0
O8i—Gd1—O582.71 (15)N1—C5—C4121.9 (6)
O1—Gd1—O777.42 (16)N1—C5—H5A119.1
O3—Gd1—O7145.32 (15)C4—C5—H5A119.1
O8i—Gd1—O773.87 (15)O2—C6—O1125.6 (5)
O5—Gd1—O781.52 (18)O2—C6—C3118.8 (5)
O1—Gd1—O976.97 (17)O1—C6—C3115.4 (5)
O3—Gd1—O973.28 (16)N2—C7—C8123.3 (6)
O8i—Gd1—O9141.49 (16)N2—C7—H7A118.4
O5—Gd1—O969.98 (15)C8—C7—H7A118.4
O7—Gd1—O975.62 (18)C9—C8—C7118.6 (6)
O1—Gd1—O2i71.51 (16)C9—C8—H8A120.7
O3—Gd1—O2i77.15 (14)C7—C8—H8A120.7
O8i—Gd1—O2i77.31 (14)C8—C9—C10118.9 (5)
O5—Gd1—O2i144.13 (14)C8—C9—C12120.6 (5)
O7—Gd1—O2i119.97 (15)C10—C9—C12120.5 (5)
O9—Gd1—O2i139.49 (14)C11—C10—C9118.6 (6)
O1—Gd1—O10141.58 (15)C11—C10—H10B120.7
O3—Gd1—O1071.24 (14)C9—C10—H10B120.7
O8i—Gd1—O1074.21 (14)N2—C11—C10123.5 (6)
O5—Gd1—O1069.25 (15)N2—C11—H11A118.2
O7—Gd1—O10138.84 (14)C10—C11—H11A118.2
O9—Gd1—O10117.66 (16)O4—C12—O3127.1 (5)
O2i—Gd1—O1076.74 (14)O4—C12—C9117.6 (5)
N4ii—Ag1—N1178.6 (2)O3—C12—C9115.3 (5)
N2iii—Ag2—N3147.1 (2)N3—C13—C14123.0 (6)
C6—O1—Gd1162.4 (4)N3—C13—H13A118.5
C6—O2—Gd1iv132.5 (3)C14—C13—H13A118.5
C12—O3—Gd1138.3 (4)C13—C14—C15119.3 (6)
C18—O5—Gd1146.4 (4)C13—C14—H14A120.3
C24—O7—Gd1161.8 (4)C15—C14—H14A120.3
C24—O8—Gd1iv137.2 (4)C16—C15—C14118.0 (5)
Gd1—O9—H9A99.5C16—C15—C18122.1 (5)
Gd1—O9—H9B127.5C14—C15—C18119.8 (5)
H9A—O9—H9B127.5C17—C16—C15119.6 (5)
Gd1—O10—H10C104.3C17—C16—H16A120.2
Gd1—O10—H10A121.4C15—C16—H16A120.2
H10C—O10—H10A104.5N3—C17—C16123.6 (6)
H14C—O14—H14B129.5N3—C17—H17A118.2
C1—N1—C5118.0 (5)C16—C17—H17A118.2
C1—N1—Ag1121.4 (4)O5—C18—O6127.3 (6)
C5—N1—Ag1120.6 (4)O5—C18—C15116.5 (5)
C7—N2—C11117.1 (5)O6—C18—C15116.2 (5)
C7—N2—Ag2ii121.6 (4)N4—C19—C20122.8 (5)
C11—N2—Ag2ii121.0 (4)N4—C19—H19A118.6
C17—N3—C13116.4 (5)C20—C19—H19A118.6
C17—N3—Ag2121.3 (4)C23—C20—C19118.9 (5)
C13—N3—Ag2122.2 (4)C23—C20—H20A120.5
C21—N4—C19116.7 (5)C19—C20—H20A120.5
C21—N4—Ag1iii122.2 (4)N4—C21—C22123.4 (6)
C19—N4—Ag1iii121.0 (4)N4—C21—H21A118.3
O12—N5—O11121.1 (9)C22—C21—H21A118.3
O12—N5—O13120.3 (7)C21—C22—C23119.0 (5)
O11—N5—O13118.4 (8)C21—C22—H22A120.5
N1—C1—C2123.3 (6)C23—C22—H22A120.5
N1—C1—H1A118.4C20—C23—C22118.9 (5)
C2—C1—H1A118.4C20—C23—C24120.2 (5)
C3—C2—C1118.6 (5)C22—C23—C24120.8 (5)
C3—C2—H2A120.7O7—C24—O8125.9 (5)
C1—C2—H2A120.7O7—C24—C23116.8 (5)
C2—C3—C4118.1 (5)O8—C24—C23117.2 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O60.852.132.771 (7)132
O9—H9B···O2iv0.852.032.811 (6)153
O10—H10A···O6v0.852.122.954 (6)165
O10—H10C···O40.851.842.662 (6)162
O14—H14B···O12vi0.852.272.960 (9)139
O14—H14C···O13vii0.852.012.779 (10)151
Symmetry codes: (iv) x, y+1/2, z1/2; (v) x, y, z+1; (vi) x+1, y+1/2, z1/2; (vii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2O
Mr977.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.889 (8), 24.744 (11), 6.750 (3)
β (°) 96.240 (9)
V3)2804 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.80
Crystal size (mm)0.30 × 0.12 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.703, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16445, 4859, 4370
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.129, 1.08
No. of reflections4859
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 1.27

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Gd1—O12.357 (4)Gd1—O92.454 (4)
Gd1—O2i2.465 (4)Gd1—O102.533 (4)
Gd1—O32.383 (4)Ag1—N12.144 (5)
Gd1—O52.393 (4)Ag1—N4ii2.147 (5)
Gd1—O72.399 (4)Ag2—N2iii2.189 (5)
Gd1—O8i2.386 (4)Ag2—N32.199 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O60.852.132.771 (7)132
O9—H9B···O2iv0.852.032.811 (6)153
O10—H10A···O6v0.852.122.954 (6)165
O10—H10C···O40.851.842.662 (6)162
O14—H14B···O12vi0.852.272.960 (9)139
O14—H14C···O13vii0.852.012.779 (10)151
Symmetry codes: (iv) x, y+1/2, z1/2; (v) x, y, z+1; (vi) x+1, y+1/2, z1/2; (vii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Young Talent Fund of Fujian Province (No. 2007 F3060).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem. 46, 10534–10538.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, J.-W., Zheng, S.-T. & Yang, G.-Y. (2008). Inorg. Chem. 47, 4930–4935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFan, L.-Q. & Wu, J.-H. (2010). Acta Cryst. E66, m240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, M., Zhao, B., Zuo, Y., Chen, J., Shi, W., Liang, J. & Cheng, P. (2009). Dalton Trans. pp. 7765–7770.  Web of Science CSD CrossRef Google Scholar
First citationLuo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des. 7, 851–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1234-m1235
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds