metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­chloridobis[μ-1-(4-pyridyl­meth­yl)-1,2,4-triazole]cadmium(II)]

aDepartment of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
*Correspondence e-mail: lizhulai@126.com

(Received 25 August 2010; accepted 9 September 2010; online 15 September 2010)

In the title coordination polymer, [CdCl2(C8H8N4)2]n, the CdII atom, lying on an inversion center, is coordinated by two Cl atoms and two triazole N atoms and two pyridyl N atoms from four 1-(4-pyridyl­meth­yl)-1,2,4-triazole (pmta) ligands in a distorted trans-CdCl2N4 octa­hedral arrangement. The bridg­ing pmta ligands, with a dihedral angle between the triazole and pyridyl rings of 71.86 (8)°, link the Cd atoms into a 44 sheet parallel to ([\overline{1}]02). ππ inter­actions between the triazole rings [centroid–centroid distance = 3.428 (2) Å] connect the sheets.

Related literature

For our previous studies on the design and synthesis of some unsymmetric flexible ligands, see: Huang et al. (2006[Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211-217.]); Liu et al. (2005[Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. (2005). Inorg. Chem. Commun. 8, 212-215.]). For related structures, see: Li et al. (2009[Li, Z.-L., Wang, J., Xu, X.-Z. & Ye, X. (2009). Acta Cryst. E65, m340.]); Wang et al. (2008[Wang, J., Huang, M., Liu, P. & Cheng, W. (2008). J. Mol. Struct. 875, 22-26.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C8H8N4)2]

  • Mr = 503.67

  • Monoclinic, P 21 /c

  • a = 7.5795 (5) Å

  • b = 16.9491 (10) Å

  • c = 8.2215 (5) Å

  • β = 113.325 (3)°

  • V = 969.86 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.04 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.841, Tmax = 1.000

  • 6994 measured reflections

  • 2214 independent reflections

  • 2079 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.048

  • S = 1.01

  • 2214 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N3 2.3531 (16)
Cd1—N4i 2.4183 (16)
Cd1—Cl1 2.5842 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our group has focused on the design and synthesis of some unsymmetric flexible ligands (Huang et al., 2006; Liu et al., 2005), and we have got a heterocyclic ligand 1-(4-pyridylmethyl)-1,2,4-triazole (pmta). In order to explore the architectural styles and coordination chemistry of this kind of ligands, we selected cadmium chloride as representative subject for stereoregular coordination. Among our attempts, the title compound, a new coordination polymer, was obtained as crystals suitable for single-crystal X-ray analysis.

The title compound is isomorphic to the complex we have reported (Li et al., 2009; Wang et al., 2008). The crystallographic analysis reveals that the asymmetric unit contains one CdII atom lying on an inversion center, one Cl anion and one bridging pmta ligand, as shown in Fig. 1. The CdII atom lies in an octahedral [CdCl2N4] environment, with the axial positions occupied by two Cl atoms and the equatorial positions occupied by two trans triazole N atoms and two trans pyridyl N atoms, which belong to four different pmta ligands. The bond angles about Cd1 atom range from 85.82 (6) to 94.18 (6)° and deviate slightly from those of a perfect octahedron. Due to the existence of the –CH2– spacer between the triazole and pyridyl rings with a dihedral angle of 71.86 (8)°, sufficient flexibility makes it possible for pmta to be twisted to meet the requirment of coordination geometries of the Cd center.

As shown in Fig. 2, the title compound exhibits a two-dimensional rhombohedral sheet containing 36-membered sandglass rings. The sp3 configuration of C3 forces the pmta ligand to be non-linear, generating the non-linear grid sides and thereby the sandglass grids. Every complementary four [Cd4(pmta)4] grids are joined together by sharing the Cd apices, giving a 44 topology with a side length of 11.022 Å and diagonal measurements of 14.096 and 16.949 Å.

Related literature top

For our previous studies on the design and synthesis of some unsymmetric flexible ligands, see: Huang et al. (2006); Liu et al. (2005). For related structures, see: Li et al. (2009); Wang et al. (2008).

Experimental top

A solution of pmta (0.021 g, 0.10 mmol) in MeOH (5 ml) was carefully layered on a solution of CdCl2.2.5H2O (0.023 g, 0.10 mmol) in H2O (5 ml). Diffusion between the two phases over a period of two weeks produced colorless block crystals.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, -y+1, -z; (B) -x+1, y-1/2, -z+1/2; (C) x-1, -y+3/2, z-1/2.]
[Figure 2] Fig. 2. The two-dimensional structure of the title compound, constructed of rhombus-shaped grids.
Poly[dichloridobis[µ-1-(4-pyridylmethyl)-1,2,4-triazole]cadmium(II)] top
Crystal data top
[CdCl2(C8H8N4)2]F(000) = 500
Mr = 503.67Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2546 reflections
a = 7.5795 (5) Åθ = 2.7–27.5°
b = 16.9491 (10) ŵ = 1.42 mm1
c = 8.2215 (5) ÅT = 293 K
β = 113.325 (3)°Prism, colorless
V = 969.86 (10) Å30.20 × 0.18 × 0.04 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2214 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 99
Tmin = 0.841, Tmax = 1.000k = 1522
6994 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.016P)2 + 0.9435P]
where P = (Fo2 + 2Fc2)/3
2214 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[CdCl2(C8H8N4)2]V = 969.86 (10) Å3
Mr = 503.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5795 (5) ŵ = 1.42 mm1
b = 16.9491 (10) ÅT = 293 K
c = 8.2215 (5) Å0.20 × 0.18 × 0.04 mm
β = 113.325 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2214 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2079 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.016
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.01Δρmax = 0.78 e Å3
2214 reflectionsΔρmin = 0.23 e Å3
124 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.00000.02465 (6)
Cl10.18617 (7)0.53526 (3)0.19411 (7)0.03766 (12)
N20.4333 (3)0.60582 (12)0.5065 (2)0.0416 (4)
C20.4379 (3)0.56302 (12)0.2553 (3)0.0309 (4)
H20.48220.55150.16740.037*
C30.7421 (3)0.62024 (12)0.4780 (3)0.0387 (5)
H3A0.80330.59210.41160.046*
H3B0.80160.60270.60000.046*
C40.7814 (3)0.70736 (11)0.4718 (3)0.0315 (4)
C50.6464 (3)0.76634 (13)0.4358 (3)0.0404 (5)
H50.51870.75400.41060.048*
C60.7022 (3)0.84449 (12)0.4373 (3)0.0385 (5)
H60.60940.88360.41410.046*
C71.0109 (3)0.80837 (14)0.5028 (4)0.0501 (6)
H71.13680.82210.52390.060*
C80.9684 (3)0.72969 (13)0.5070 (4)0.0496 (6)
H81.06460.69190.53320.060*
N30.2643 (2)0.54659 (10)0.2469 (2)0.0306 (4)
C10.2694 (3)0.57354 (12)0.4037 (3)0.0356 (4)
H10.16530.56950.43600.043*
N10.5399 (2)0.59858 (9)0.4081 (2)0.0309 (4)
N40.8817 (3)0.86600 (10)0.4702 (2)0.0351 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02100 (10)0.02176 (10)0.03014 (10)0.00065 (7)0.00902 (7)0.00232 (7)
Cl10.0338 (3)0.0460 (3)0.0388 (3)0.0022 (2)0.0204 (2)0.0020 (2)
N20.0476 (11)0.0420 (11)0.0385 (10)0.0133 (9)0.0205 (9)0.0113 (8)
C20.0264 (9)0.0316 (10)0.0330 (10)0.0031 (8)0.0097 (8)0.0057 (8)
C30.0261 (10)0.0265 (10)0.0511 (13)0.0061 (8)0.0022 (9)0.0011 (9)
C40.0307 (10)0.0257 (9)0.0331 (10)0.0049 (8)0.0073 (8)0.0019 (8)
C50.0274 (10)0.0317 (11)0.0579 (14)0.0051 (8)0.0125 (10)0.0022 (10)
C60.0320 (11)0.0276 (10)0.0534 (13)0.0007 (8)0.0141 (10)0.0039 (9)
C70.0315 (11)0.0284 (11)0.094 (2)0.0065 (9)0.0285 (12)0.0064 (12)
C80.0338 (12)0.0250 (11)0.0862 (19)0.0009 (9)0.0197 (12)0.0064 (11)
N30.0246 (8)0.0318 (9)0.0334 (8)0.0030 (7)0.0095 (7)0.0038 (7)
C10.0390 (11)0.0336 (11)0.0387 (11)0.0064 (9)0.0202 (9)0.0052 (9)
N10.0283 (8)0.0235 (8)0.0365 (9)0.0051 (6)0.0082 (7)0.0010 (7)
N40.0345 (9)0.0246 (8)0.0479 (10)0.0036 (7)0.0180 (8)0.0005 (7)
Geometric parameters (Å, º) top
Cd1—N32.3531 (16)C4—C81.383 (3)
Cd1—N4i2.4183 (16)C5—C61.389 (3)
Cd1—Cl12.5842 (5)C5—H50.9300
N2—C11.313 (3)C6—N41.329 (3)
N2—N11.357 (3)C6—H60.9300
C2—N31.320 (2)C7—N41.333 (3)
C2—N11.330 (2)C7—C81.375 (3)
C2—H20.9300C7—H70.9300
C3—N11.454 (2)C8—H80.9300
C3—C41.511 (3)N3—C11.353 (3)
C3—H3A0.9700C1—H10.9300
C3—H3B0.9700N4—Cd1ii2.4183 (16)
C4—C51.376 (3)
N3iii—Cd1—N3180.0C5—C4—C3125.27 (19)
N3iii—Cd1—N4i85.82 (6)C8—C4—C3117.38 (19)
N3—Cd1—N4i94.18 (6)C4—C5—C6119.5 (2)
N3iii—Cd1—N4iv94.18 (6)C4—C5—H5120.2
N3—Cd1—N4iv85.82 (6)C6—C5—H5120.2
N4i—Cd1—N4iv180.00 (10)N4—C6—C5123.2 (2)
N3iii—Cd1—Cl191.79 (4)N4—C6—H6118.4
N3—Cd1—Cl188.21 (4)C5—C6—H6118.4
N4i—Cd1—Cl190.49 (5)N4—C7—C8123.7 (2)
N4iv—Cd1—Cl189.51 (5)N4—C7—H7118.1
N3iii—Cd1—Cl1iii88.21 (4)C8—C7—H7118.1
N3—Cd1—Cl1iii91.79 (4)C7—C8—C4119.4 (2)
N4i—Cd1—Cl1iii89.51 (5)C7—C8—H8120.3
N4iv—Cd1—Cl1iii90.49 (5)C4—C8—H8120.3
Cl1—Cd1—Cl1iii180.0C2—N3—C1103.13 (16)
C1—N2—N1102.33 (17)C2—N3—Cd1127.31 (13)
N3—C2—N1109.85 (18)C1—N3—Cd1128.94 (14)
N3—C2—H2125.1N2—C1—N3114.62 (19)
N1—C2—H2125.1N2—C1—H1122.7
N1—C3—C4115.10 (17)N3—C1—H1122.7
N1—C3—H3A108.5C2—N1—N2110.07 (17)
C4—C3—H3A108.5C2—N1—C3127.96 (19)
N1—C3—H3B108.5N2—N1—C3121.64 (18)
C4—C3—H3B108.5C6—N4—C7116.82 (18)
H3A—C3—H3B107.5C6—N4—Cd1ii125.95 (14)
C5—C4—C8117.34 (19)C7—N4—Cd1ii117.03 (14)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C8H8N4)2]
Mr503.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5795 (5), 16.9491 (10), 8.2215 (5)
β (°) 113.325 (3)
V3)969.86 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.20 × 0.18 × 0.04
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.841, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6994, 2214, 2079
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.048, 1.01
No. of reflections2214
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.23

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N32.3531 (16)Cd1—Cl12.5842 (5)
Cd1—N4i2.4183 (16)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Fujian Provincial Science and Technology Innovation Foundation under grant No. 2007 F3038 for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHuang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z.-L., Wang, J., Xu, X.-Z. & Ye, X. (2009). Acta Cryst. E65, m340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. (2005). Inorg. Chem. Commun. 8, 212–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Huang, M., Liu, P. & Cheng, W. (2008). J. Mol. Struct. 875, 22–26.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds