organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­pyridin-2-yl)hydrazine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 29 June 2010; accepted 15 September 2010; online 18 September 2010)

The title compound, C5H6ClN3, was synthesized by the reaction of 2,3-dichloro­pyridine and hydrazine hydrate. An intra­molecular N—H⋯Cl hydrogen bond results in the formation of a planar (mean deviation 0.038 Å) five-membered ring. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

The title compound is an inter­mediate in the synthesis of Rynaxypyr, a new insecticidal anthranilic diamide. For the synthesis and biological properties of Rynaxypyr, see: Lahm et al. (2007[Lahm, G. P., Stevenson, T. M., Selby, T. P., Cordova, F. D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274-6279.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN3

  • Mr = 143.58

  • Monoclinic, P 21 /c

  • a = 11.637 (2) Å

  • b = 3.9060 (8) Å

  • c = 13.946 (3) Å

  • β = 103.46 (3)°

  • V = 616.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.860, Tmax = 0.950

  • 2173 measured reflections

  • 1124 independent reflections

  • 936 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.04

  • 1124 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl 0.88 (2) 2.58 (2) 2.970 (2) 108 (2)
N2—H2A⋯N3i 0.88 (2) 2.28 (2) 3.058 (3) 148 (2)
N3—H3A⋯N1ii 0.94 (2) 2.41 (2) 3.243 (3) 148 (2)
N3—H3B⋯N2iii 0.90 (2) 2.68 (2) 3.492 (3) 151 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-(3-Chloropyridin-2-yl)hydrazine is an important intermediate in the synthesis of Rynaxypyr, a new insecticidal anthranilic diamide, which acts as a potent and selective ryanodine receptor activator. Rynaxypyr is characterized by its high levels of insecticidal activity and low toxicity to mammals attributed to a high selectivity for insect over mammalian ryanodine receptors (Lahm et al., 2007).

We report herein the crystal structure of the title compound,(I). In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. The pyridine ring A(C1/C2/C3/N1/C4/C5) is, of course, planar with a mean deviation from planarity of 0.0027 Å (C1 - 0.0013, C2 - 0.0027, C3 0.0037, N1 - 0.0005, C4 - 0.0034 and C5 0.0042 Å, respectively). An intramolecular N—H···Cl hydrogen bond (Table 1) results in the formation of one planar five-membered ring B(C4/C5/Cl/H2A/N2) with a mean deviation from planarity of 0.0380 Å (C4 0.0119, C5 - 0.0382, Cl 0.0382, H2A -0.0568 and N2 0.0503 Å, respectively). The dihedral angle A/B = 3.5 (1) Å, showing the rings to be almost coplanar. In the crystal structure, three intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2).

Related literature top

The title compound is an intermediate in the synthesis

of Rynaxypyr, a new insecticidal anthranilic diamide. For the synthesis and biological properties of Rynaxypyr, see: Lahm et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Hydrazine hydrate (10 mmol) was added dropwise to a refluxing solution of 2,3-dichloropyridine (10 mmol) in ethanol. The reaction mixture was stirred and refluxed for 2 h. After cooling and filtering, crude compound (I) was obtained. Pure compound (I) was obtained by recrystallization from THF (15 ml, yield 65%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution.

Refinement top

All H atoms bonded to carbon were placed geometrically with distances of 0.93 Å refined using a riding motion approximation with Uiso(H) = 1.2 Ueq(C) of the carrier atom. H atoms at the hyrazido substituent were found in the difference Fourier map and refined freely.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1-(3-Chloropyridin-2-yl)hydrazine top
Crystal data top
C5H6ClN3F(000) = 296
Mr = 143.58Dx = 1.547 Mg m3
Monoclinic, P21/cMelting point = 427–429 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.637 (2) ÅCell parameters from 25 reflections
b = 3.9060 (8) Åθ = 9–13°
c = 13.946 (3) ŵ = 0.52 mm1
β = 103.46 (3)°T = 293 K
V = 616.5 (2) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
936 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 44
Tmin = 0.860, Tmax = 0.950l = 1616
2173 measured reflections3 standard reflections every 200 reflections
1124 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1124 reflectionsΔρmax = 0.17 e Å3
91 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.166 (16)
Crystal data top
C5H6ClN3V = 616.5 (2) Å3
Mr = 143.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.637 (2) ŵ = 0.52 mm1
b = 3.9060 (8) ÅT = 293 K
c = 13.946 (3) Å0.30 × 0.20 × 0.10 mm
β = 103.46 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
936 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.860, Tmax = 0.9503 standard reflections every 200 reflections
2173 measured reflections intensity decay: 1%
1124 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
1124 reflectionsΔρmin = 0.15 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.18715 (4)0.20164 (13)0.95683 (4)0.0436 (2)
N10.33408 (13)0.6634 (4)1.20853 (11)0.0332 (4)
N20.41097 (14)0.4864 (5)1.07771 (12)0.0394 (4)
H2A0.4020 (19)0.408 (6)1.0174 (17)0.059*
N30.51985 (14)0.6524 (5)1.11726 (13)0.0388 (4)
H3B0.509 (2)0.874 (7)1.1298 (17)0.058*
H3A0.554 (2)0.586 (6)1.1821 (16)0.058*
C10.11354 (17)0.4002 (5)1.11712 (14)0.0374 (5)
H10.03990.31181.08660.045*
C20.13219 (17)0.5562 (5)1.21092 (14)0.0408 (5)
H20.07160.57321.24390.049*
C30.24223 (18)0.6808 (5)1.25120 (15)0.0377 (5)
H30.25450.78541.31270.045*
C40.31800 (15)0.5159 (4)1.12028 (13)0.0286 (4)
C50.20482 (16)0.3823 (5)1.07282 (13)0.0307 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0486 (3)0.0455 (3)0.0348 (3)0.0082 (2)0.0057 (2)0.0066 (2)
N10.0373 (9)0.0332 (9)0.0296 (8)0.0007 (7)0.0089 (7)0.0007 (7)
N20.0337 (9)0.0518 (11)0.0339 (9)0.0069 (8)0.0103 (7)0.0107 (8)
N30.0334 (9)0.0437 (10)0.0392 (9)0.0045 (8)0.0083 (7)0.0041 (8)
C10.0358 (10)0.0331 (11)0.0436 (11)0.0017 (8)0.0095 (9)0.0098 (9)
C20.0415 (11)0.0414 (12)0.0445 (12)0.0053 (9)0.0202 (9)0.0071 (10)
C30.0481 (12)0.0333 (10)0.0348 (10)0.0054 (9)0.0158 (9)0.0014 (8)
C40.0323 (10)0.0231 (9)0.0304 (9)0.0017 (7)0.0072 (7)0.0026 (7)
C50.0365 (10)0.0251 (9)0.0292 (9)0.0009 (8)0.0048 (8)0.0031 (7)
Geometric parameters (Å, º) top
Cl—C51.7327 (18)C1—C51.349 (3)
N1—C41.332 (2)C1—C21.413 (3)
N1—C31.341 (2)C1—H10.9300
N2—C41.355 (2)C2—C31.363 (3)
N2—N31.416 (2)C2—H20.9300
N2—H2A0.88 (2)C3—H30.9300
N3—H3B0.90 (3)C4—C51.428 (2)
N3—H3A0.94 (2)
C4—N1—C3118.50 (17)C3—C2—H2121.2
C4—N2—N3121.60 (16)C1—C2—H2121.2
C4—N2—H2A121.3 (15)N1—C3—C2124.65 (19)
N3—N2—H2A115.4 (15)N1—C3—H3117.7
N2—N3—H3B111.6 (15)C2—C3—H3117.7
N2—N3—H3A112.9 (14)N1—C4—N2119.14 (16)
H3B—N3—H3A97.2 (19)N1—C4—C5120.15 (16)
C5—C1—C2118.59 (18)N2—C4—C5120.69 (16)
C5—C1—H1120.7C1—C5—C4120.56 (17)
C2—C1—H1120.7C1—C5—Cl120.90 (15)
C3—C2—C1117.55 (18)C4—C5—Cl118.54 (14)
C5—C1—C2—C30.1 (3)C2—C1—C5—C40.5 (3)
C4—N1—C3—C20.3 (3)C2—C1—C5—Cl178.77 (13)
C1—C2—C3—N10.6 (3)N1—C4—C5—C10.8 (3)
C3—N1—C4—N2177.86 (17)N2—C4—C5—C1177.42 (18)
C3—N1—C4—C50.3 (3)N1—C4—C5—Cl178.52 (13)
N3—N2—C4—N19.6 (3)N2—C4—C5—Cl3.3 (2)
N3—N2—C4—C5172.20 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl0.88 (2)2.58 (2)2.970 (2)108 (2)
N2—H2A···N3i0.88 (2)2.28 (2)3.058 (3)148 (2)
N3—H3A···N1ii0.94 (2)2.41 (2)3.243 (3)148 (2)
N3—H3B···N2iii0.90 (2)2.68 (2)3.492 (3)151 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1/2, z+5/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H6ClN3
Mr143.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.637 (2), 3.9060 (8), 13.946 (3)
β (°) 103.46 (3)
V3)616.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.860, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
2173, 1124, 936
Rint0.036
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.04
No. of reflections1124
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl0.88 (2)2.58 (2)2.970 (2)108 (2)
N2—H2A···N3i0.88 (2)2.28 (2)3.058 (3)148 (2)
N3—H3A···N1ii0.94 (2)2.41 (2)3.243 (3)148 (2)
N3—H3B···N2iii0.90 (2)2.68 (2)3.492 (3)151 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1/2, z+5/2; (iii) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for allowing the Enraf–Nonius CAD-4 diffractometer to be used for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLahm, G. P., Stevenson, T. M., Selby, T. P., Cordova, F. D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274–6279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds