organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-[(E)-1,2-di­phenyl­ethen­yl]-1H-indole

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 7 August 2010; accepted 28 August 2010; online 8 September 2010)

In the title compound, C22H16ClN, the pyrrole system makes a dihedral angle of 68.9 (1)° with the plane of phenyl ring at the ethenyl 1-position. An intra­molecular C—H⋯π inter­action is observed. In the crystal, inter­molecular C—H⋯π inter­actions link the mol­ecules into infinite chains running along the b axis.

Related literature

For the synthesis and potential uses of indole derivatives, see: Bhuvaneswari et al. (2007[Bhuvaneswari, S., Jeganmohan, M. & Cheng, C. H. (2007). Chem. Eur. J. 13, 8285-8293.]); Ghosh & Maiti (2007[Ghosh, R. & Maiti, S. (2007). J. Mol. Catal. A Chem. 264, 1-8.]); Sakai et al. (2008[Sakai, N., Annaka, K., Fujita, A., Sato, A. & Konakahara, T. (2008). J. Org. Chem. 73, 4160-4165.]); Kakiuchi & Kochi (2008[Kakiuchi, F. & Kochi, T. (2008). Synthesis, pp. 3013-3039.]). For the general synthetic procedure and structure analysis of a derivative of the title compound, see: Bhaskar et al. (2010[Bhaskar, G., Saikumar, C. & Perumal, P. T. (2010). Tetrahedron Lett. 51, 3141-3145.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16ClN

  • Mr = 329.81

  • Monoclinic, P 21 /c

  • a = 10.8869 (6) Å

  • b = 14.0373 (8) Å

  • c = 10.7978 (4) Å

  • β = 91.706 (2)°

  • V = 1649.42 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.955

  • 12914 measured reflections

  • 3928 independent reflections

  • 2804 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.32

  • 3928 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1and Cg2 are the centroids of the C10–C15 and C3–C8 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg1 0.93 2.74 3.573 (2) 150
C20—H20⋯Cg2i 0.93 2.97 3.690 (2) 136
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bhuvaneswari and co-workers (2007) investigated the reaction of indoles with alkynyl alcohols employing platinum as catalyst. Indium(III) bromide is known to catalyze intramolecular cyclization of 2-alkynylanilines (Sakai et al., 2008). The unique properties of indium halides and indium trifluoromethanesulfonate such as non-toxicity, stability in air, and water tolerance has also been described (Ghosh & Maiti 2007). Development of methodologies for heteroarene functionalization via C—H activation provides useful applications such as fluorescent dyes, synthetic analogues of natural products, and pharmaceuticals (Kakiuchi & Kochi, 2008). Against this background the structure of the title compound was determined by X–ray diffraction.

A perspective view of the title compound with the atom-numbering scheme is shown in Fig. 1. In the structure, all bond lengths and angles are within normal ranges (Allen et al., 1987). The chlorine atom deviates from the least squares planes of the C3—C8 benzene ring by 0.040 (1) Å. The dihedral angle between the pyrroline ring and phenyl ring (C10—C15) is 68.9 (1) °. The indole ring is planar as expected, the maximum deviation from the least squares plane being 0.034 (1) Å for atom C5. The dihedral angle between the phenyl rings C17—C22 and C24—C29 is 78.5 (2) °.

In the crystal structure two C—H···π interactions are observed. One intramolecular interaction determines the conformation of the molecules whereas one intermolecular interaction links the molecules to infinite chains. The C—H···π interactions involve rings C18—H18···Cg1i (separation of 2.74 Å) and C20—H20···Cg2ii (separation of 2.97 Å, Table 1, Cg1 is the centroid of the C10—C15 ring and Cg2 is the centroid of the C3—C8 ring).

Related literature top

For the synthesis and potential uses of indole derivatives, see: Bhuvaneswari et al. (2007); Ghosh & Maiti (2007); Sakai et al. (2008); Kakiuchi & Kochi (2008). For the general synthetic procedure and structure analysis of a derivative of the title compound, see: Bhaskar et al. (2010). For typical bond lengths, see Allen et al. (1987).

Experimental top

A mixture of diphenylacetylene (2.4 mmol), 5-Chloro indole (2 mmol) and indium tribromide (0.2 mmol) in toluene (4 ml) was stirred at 383 K for the appropriate time. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 100 - 200 mesh) to afford the desired product after crystallization (yield: 86%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.84 Å. H atoms bonded to carbon were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. H1N was refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···π interactions (dashed lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x, y, z; (ii) 1 - x, -1/2 + y, 1/2 - z]
5-Chloro-3-[(E)-1,2-diphenylethenyl]-1H-indole top
Crystal data top
C22H16ClNF(000) = 688
Mr = 329.81Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3737 reflections
a = 10.8869 (6) Åθ = 2.4–27.7°
b = 14.0373 (8) ŵ = 0.23 mm1
c = 10.7978 (4) ÅT = 298 K
β = 91.706 (2)°Block, colourless
V = 1649.42 (14) Å30.35 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3928 independent reflections
Radiation source: fine-focus sealed tube2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scanθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1410
Tmin = 0.923, Tmax = 0.955k = 1818
12914 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.32 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
3928 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H16ClNV = 1649.42 (14) Å3
Mr = 329.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8869 (6) ŵ = 0.23 mm1
b = 14.0373 (8) ÅT = 298 K
c = 10.7978 (4) Å0.35 × 0.22 × 0.20 mm
β = 91.706 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3928 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2804 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.955Rint = 0.023
12914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.32Δρmax = 0.24 e Å3
3928 reflectionsΔρmin = 0.23 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50474 (15)0.38298 (11)0.55429 (14)0.0442 (4)
H10.43080.41610.55420.053*
C20.52390 (13)0.29966 (10)0.49125 (12)0.0353 (3)
C30.65154 (13)0.27519 (10)0.51474 (12)0.0339 (3)
C40.72997 (13)0.20455 (10)0.47216 (13)0.0381 (3)
H40.70130.15820.41690.046*
C50.85081 (13)0.20491 (11)0.51365 (13)0.0417 (4)
C60.89718 (14)0.27230 (12)0.59749 (14)0.0493 (4)
H60.97850.26860.62610.059*
C70.82271 (15)0.34403 (12)0.63776 (14)0.0494 (4)
H70.85280.39030.69230.059*
C80.70140 (14)0.34575 (11)0.59495 (13)0.0398 (4)
C90.43048 (12)0.24722 (10)0.41772 (12)0.0353 (3)
C100.32774 (13)0.30607 (10)0.36239 (13)0.0353 (3)
C110.22693 (15)0.32999 (12)0.42986 (14)0.0508 (4)
H110.22380.31210.51270.061*
C120.13000 (16)0.38050 (12)0.37533 (16)0.0580 (5)
H120.06240.39640.42170.070*
C130.13352 (15)0.40699 (12)0.25378 (16)0.0524 (4)
H130.06760.43970.21710.063*
C140.23442 (15)0.38539 (11)0.18569 (15)0.0502 (4)
H140.23770.40460.10340.060*
C150.33150 (13)0.33484 (11)0.23991 (13)0.0417 (4)
H150.39960.32020.19360.050*
C160.43655 (13)0.15227 (11)0.40398 (12)0.0393 (3)
H160.50360.12430.44510.047*
C170.35713 (13)0.08460 (10)0.33620 (12)0.0358 (3)
C180.23999 (14)0.10354 (11)0.28396 (15)0.0467 (4)
H180.20560.16370.29300.056*
C190.17550 (15)0.03436 (12)0.21967 (15)0.0532 (4)
H190.09850.04880.18510.064*
C200.22244 (15)0.05556 (13)0.20551 (15)0.0524 (4)
H200.17800.10150.16120.063*
C210.33554 (16)0.07694 (12)0.25734 (14)0.0494 (4)
H210.36790.13780.24910.059*
C220.40145 (14)0.00790 (11)0.32190 (13)0.0425 (4)
H220.47780.02360.35700.051*
Cl10.95028 (4)0.11701 (3)0.46169 (4)0.06518 (18)
N10.60946 (13)0.41032 (10)0.61706 (13)0.0498 (4)
H1N0.6191 (16)0.4607 (14)0.6598 (16)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (9)0.0412 (9)0.0470 (9)0.0070 (7)0.0014 (7)0.0023 (7)
C20.0394 (8)0.0331 (8)0.0335 (8)0.0034 (6)0.0016 (6)0.0022 (6)
C30.0386 (8)0.0327 (7)0.0303 (7)0.0002 (6)0.0013 (6)0.0011 (6)
C40.0404 (8)0.0362 (8)0.0374 (8)0.0014 (6)0.0048 (6)0.0033 (6)
C50.0386 (8)0.0430 (9)0.0431 (9)0.0072 (7)0.0028 (6)0.0003 (7)
C60.0415 (9)0.0549 (10)0.0506 (9)0.0018 (8)0.0122 (7)0.0020 (8)
C70.0532 (10)0.0476 (9)0.0468 (9)0.0069 (8)0.0106 (7)0.0097 (8)
C80.0463 (9)0.0365 (8)0.0365 (8)0.0006 (7)0.0013 (7)0.0024 (6)
C90.0328 (7)0.0362 (8)0.0368 (8)0.0045 (6)0.0015 (6)0.0011 (6)
C100.0348 (7)0.0313 (7)0.0396 (8)0.0016 (6)0.0016 (6)0.0022 (6)
C110.0505 (10)0.0595 (11)0.0427 (9)0.0174 (8)0.0055 (7)0.0036 (8)
C120.0458 (10)0.0673 (12)0.0613 (12)0.0218 (9)0.0066 (8)0.0043 (9)
C130.0469 (10)0.0491 (10)0.0604 (11)0.0137 (8)0.0133 (8)0.0027 (8)
C140.0548 (10)0.0509 (10)0.0442 (9)0.0024 (8)0.0096 (8)0.0077 (7)
C150.0376 (8)0.0445 (9)0.0431 (9)0.0006 (7)0.0023 (7)0.0012 (7)
C160.0365 (8)0.0395 (8)0.0417 (8)0.0057 (7)0.0051 (6)0.0043 (7)
C170.0374 (8)0.0351 (8)0.0351 (8)0.0011 (6)0.0040 (6)0.0035 (6)
C180.0363 (8)0.0399 (9)0.0637 (10)0.0012 (7)0.0003 (7)0.0007 (7)
C190.0377 (9)0.0542 (11)0.0673 (11)0.0060 (8)0.0053 (8)0.0009 (9)
C200.0521 (10)0.0496 (10)0.0556 (10)0.0110 (8)0.0011 (8)0.0076 (8)
C210.0581 (10)0.0382 (9)0.0522 (10)0.0015 (8)0.0045 (8)0.0049 (7)
C220.0444 (9)0.0399 (9)0.0430 (8)0.0046 (7)0.0010 (7)0.0031 (7)
Cl10.0498 (3)0.0732 (3)0.0715 (3)0.0262 (2)0.0158 (2)0.0199 (2)
N10.0554 (9)0.0405 (8)0.0536 (8)0.0029 (7)0.0008 (7)0.0156 (7)
Geometric parameters (Å, º) top
C1—N11.364 (2)C12—C131.366 (2)
C1—C21.3723 (19)C12—H120.9300
C1—H10.9300C13—C141.374 (2)
C2—C31.4464 (19)C13—H130.9300
C2—C91.4692 (19)C14—C151.388 (2)
C3—C41.3955 (19)C14—H140.9300
C3—C81.4134 (19)C15—H150.9300
C4—C51.3770 (19)C16—C171.4655 (19)
C4—H40.9300C16—H160.9300
C5—C61.394 (2)C17—C221.3954 (19)
C5—Cl11.7454 (15)C17—C181.4044 (19)
C6—C71.371 (2)C18—C191.374 (2)
C6—H60.9300C18—H180.9300
C7—C81.386 (2)C19—C201.372 (2)
C7—H70.9300C19—H190.9300
C8—N11.376 (2)C20—C211.371 (2)
C9—C161.343 (2)C20—H200.9300
C9—C101.5003 (18)C21—C221.382 (2)
C10—C111.3768 (19)C21—H210.9300
C10—C151.3845 (19)C22—H220.9300
C11—C121.388 (2)N1—H1N0.849 (19)
C11—H110.9300
N1—C1—C2110.43 (14)C11—C12—H12119.9
N1—C1—H1124.8C12—C13—C14119.99 (15)
C2—C1—H1124.8C12—C13—H13120.0
C1—C2—C3105.95 (13)C14—C13—H13120.0
C1—C2—C9125.59 (13)C13—C14—C15119.88 (15)
C3—C2—C9128.44 (12)C13—C14—H14120.1
C4—C3—C8118.18 (13)C15—C14—H14120.1
C4—C3—C2134.83 (12)C10—C15—C14120.54 (14)
C8—C3—C2106.89 (12)C10—C15—H15119.7
C5—C4—C3118.57 (13)C14—C15—H15119.7
C5—C4—H4120.7C9—C16—C17131.93 (13)
C3—C4—H4120.7C9—C16—H16114.0
C4—C5—C6122.54 (14)C17—C16—H16114.0
C4—C5—Cl1119.25 (11)C22—C17—C18116.39 (13)
C6—C5—Cl1118.20 (12)C22—C17—C16117.23 (13)
C7—C6—C5119.88 (14)C18—C17—C16126.38 (13)
C7—C6—H6120.1C19—C18—C17120.89 (15)
C5—C6—H6120.1C19—C18—H18119.6
C6—C7—C8118.25 (14)C17—C18—H18119.6
C6—C7—H7120.9C20—C19—C18121.33 (15)
C8—C7—H7120.9C20—C19—H19119.3
N1—C8—C7130.09 (14)C18—C19—H19119.3
N1—C8—C3107.44 (13)C21—C20—C19119.28 (15)
C7—C8—C3122.46 (14)C21—C20—H20120.4
C16—C9—C2121.43 (13)C19—C20—H20120.4
C16—C9—C10122.76 (13)C20—C21—C22119.93 (15)
C2—C9—C10115.80 (12)C20—C21—H21120.0
C11—C10—C15118.76 (13)C22—C21—H21120.0
C11—C10—C9121.34 (13)C21—C22—C17122.16 (14)
C15—C10—C9119.87 (12)C21—C22—H22118.9
C10—C11—C12120.53 (15)C17—C22—H22118.9
C10—C11—H11119.7C1—N1—C8109.26 (13)
C12—C11—H11119.7C1—N1—H1N126.3 (12)
C13—C12—C11120.27 (15)C8—N1—H1N124.3 (12)
C13—C12—H12119.9
N1—C1—C2—C31.52 (17)C16—C9—C10—C1583.04 (18)
N1—C1—C2—C9177.44 (13)C2—C9—C10—C1598.36 (15)
C1—C2—C3—C4174.63 (16)C15—C10—C11—C121.1 (2)
C9—C2—C3—C46.5 (3)C9—C10—C11—C12176.83 (15)
C1—C2—C3—C81.51 (16)C10—C11—C12—C130.1 (3)
C9—C2—C3—C8177.41 (13)C11—C12—C13—C141.4 (3)
C8—C3—C4—C52.3 (2)C12—C13—C14—C151.4 (3)
C2—C3—C4—C5178.11 (15)C11—C10—C15—C141.1 (2)
C3—C4—C5—C60.8 (2)C9—C10—C15—C14176.88 (14)
C3—C4—C5—Cl1179.88 (11)C13—C14—C15—C100.1 (2)
C4—C5—C6—C72.7 (2)C2—C9—C16—C17179.56 (14)
Cl1—C5—C6—C7178.18 (12)C10—C9—C16—C171.9 (2)
C5—C6—C7—C81.4 (2)C9—C16—C17—C22168.54 (15)
C6—C7—C8—N1177.70 (16)C9—C16—C17—C1811.6 (3)
C6—C7—C8—C31.8 (2)C22—C17—C18—C191.7 (2)
C4—C3—C8—N1175.92 (12)C16—C17—C18—C19178.39 (14)
C2—C3—C8—N10.98 (16)C17—C18—C19—C200.8 (3)
C4—C3—C8—C73.7 (2)C18—C19—C20—C210.5 (3)
C2—C3—C8—C7179.42 (14)C19—C20—C21—C220.7 (2)
C1—C2—C9—C16150.83 (15)C20—C21—C22—C170.4 (2)
C3—C2—C9—C1627.9 (2)C18—C17—C22—C211.5 (2)
C1—C2—C9—C1027.8 (2)C16—C17—C22—C21178.55 (14)
C3—C2—C9—C10153.48 (13)C2—C1—N1—C80.95 (18)
C16—C9—C10—C1194.92 (18)C7—C8—N1—C1179.63 (16)
C2—C9—C10—C1183.68 (17)C3—C8—N1—C10.06 (18)
Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C10–C15 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg10.932.743.573 (2)150
C20—H20···Cg2i0.932.973.690 (2)136
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H16ClN
Mr329.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.8869 (6), 14.0373 (8), 10.7978 (4)
β (°) 91.706 (2)
V3)1649.42 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.923, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
12914, 3928, 2804
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.32
No. of reflections3928
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C10–C15 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg10.932.743.573 (2)150
C20—H20···Cg2i0.932.973.690 (2)136
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

MNM thanks the Management of The New College (Autonomous), Chennai, India, for providing the necessary facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhaskar, G., Saikumar, C. & Perumal, P. T. (2010). Tetrahedron Lett. 51, 3141–3145.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhuvaneswari, S., Jeganmohan, M. & Cheng, C. H. (2007). Chem. Eur. J. 13, 8285–8293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, R. & Maiti, S. (2007). J. Mol. Catal. A Chem. 264, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationKakiuchi, F. & Kochi, T. (2008). Synthesis, pp. 3013–3039.  Web of Science CrossRef Google Scholar
First citationSakai, N., Annaka, K., Fujita, A., Sato, A. & Konakahara, T. (2008). J. Org. Chem. 73, 4160–4165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds