metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)hydroxido[N-(4-tolyl­sulfonyl)­alaninato-κ2N,O1]copper(II) hemihydrate

aDepartment of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 1 September 2010; accepted 19 September 2010; online 30 September 2010)

In the title complex, [Cu(C10H12NO4S)(OH)(C10H8N2)]·0.5H2O, the Cu(II) ion shows a distorted square-pyramidal coordination geometry with two N atoms from the 2,2′-bipyridine ligand and one N and one O atom from the N-tosyl-α-alaninato ligand forming the basis of the coordination polyhedron and another O atom of the hydroxo group acting as the apex of the pyramid. The solvent water mol­ecule is statistically disordered over two positions.

Related literature

For related structures of N-sulfonyl­ated amino acids as ligands in coordination complexes, see Antolini et al. (1985[Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219-1222.]); Battaglia et al. (1983[Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 1902-1906.]); Liang et al. (2004[Liang, F.-P., Chen, M.-S., Hu, R.-X. & Chen, Z.-L. (2004). Acta Cryst. C60, m269-m271.]); Ma et al. (2008[Ma, L.-F., Wang, L.-Y., Huo, X.-K., Wang, Y.-Y., Fan, Y.-T., Wang, J.-G. & Chen, S.-H. (2008). Cryst. Growth Des. 8, 620-628.]); Menabue & Saladini (1991[Menabue, L. & Saladini, M. (1991). Inorg. Chem. 30, 1651-1655.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H12NO4S)(OH)(C10H8N2)]·0.5H2O

  • Mr = 976.01

  • Triclinic, [P \overline 1]

  • a = 7.7246 (13) Å

  • b = 8.3637 (14) Å

  • c = 16.908 (3) Å

  • α = 103.484 (8)°

  • β = 95.034 (6)°

  • γ = 99.656 (5)°

  • V = 1038.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.796

  • 9560 measured reflections

  • 4072 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 1.09

  • 4072 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As we know, amino acids play an important role in almost all kinds of biological processes. On the other hand, attachment of an Ar—SO2-group at the amino nitrogen of amino acids, such as glycine and β-alanine, increases the number of potential coordination sites of amino acids to three types of O or N donors from carboxyl, sulfoxyl and amino moieties, respectively. This may lead to different coordination modes and has therefore triggered increasing interest in the coordination chemistry of N-sulfonyl-amino acids in recent years (Ma, et al., 2008; Liang, et al., 2004; Battaglia, et al., 1983; Menabue & Saladini et al., 1991; Antolini, et al., 1985). In order to continue this research, we synthesized the title complex [Cu(C10H12NO4S)(C10H8N2)(OH)] × 0.5 H2O and characterized it by IR and single-crystal X-ray diffraction analyses.

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The asymmetric unit of 1 contains one copper cation, one N-tosyl-α-alaninato ligand, one 2,2'-bipyridine molecule and one coordinated hydroxo group. The coordination geometry around copper may be described as a distorted square pyramid, the basal plane being defined by two N (N2, N3) atoms of 2,2'-bipyridine and one N (N1) and one O (O1) atom of an anionic N-tosyl-α-alaninato ligand. The apical position is occupied by another O (O5) atom of an hydroxo anion. The Cu—O1 (1.963 (2) Å) and Cu—N1 (2.11 (5) Å) bond distances are longer than those of other N-protected alanine complexes (1.928–1.933 Å) and (1.930–1.956 Å), respectively (Antolini, et al., 1985). Furthermore, the C—O bond distance towards coordinated O1 (1.284 (4) Å) is significantly longer than for non-coordinated O2 (1.235 (4) Å), closely resembling the situation in previously reported complexes (Battaglia, et al., 1983; Antolini, et al., 1985).

It is noteworthy that there are π-π stacking interactions between pyridine rings of 2,2'-bipyridine molecules from adjacent molecules with a centroid distance of 3.314 (4) Å. O–H···O hydrogen bonds between hydroxo groups and carbonyl O atoms of neighboring molecules with donor-acceptor distances of 2.895 (3) and 2.804 (3) Å, respectively are also observed. These two types of intermolecular contacts form a 1-D supramolecular chain in the crystal structure of 1.

Related literature top

For related structures of N-sulfonylated amino acids as ligands in coordination complexes, see Antolini et al. (1985); Battaglia et al. (1983); Liang et al. (2004); Ma et al. (2008); Menabue & Saladini (1991).

Experimental top

To a solution of DL-tos-ala (2 mmol) in water-DMF 1:1 (10 ml), an aqueous solution (5 ml) of CuCl2 × 2 H2O (1 mmol) and a solution of 2,2'-bipyridine (1 mmol) in ethanol (95%, 5 ml) was added. After refluxing for 12 h, the mixture was filtered off while hot. Green single crystals suitable for X-ray analysis were obtained by slow evaporation of the filtrate at room temperature after 35 days (yield 43%). IR (KBr): 3450(versus), 1621(s), 1601(s), 1474(w), 1446(m), 1374(w), 1346(w), 1322(m), 1258(w), 1161(s), 1093(s), 983(w), 888(w), 812(w), 775(s), 660(s), 547(s)cm-1.

Refinement top

H atoms bonded to C were placed geometrically and treated as riding, (C—H = 0.93–0.96 Å), with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were found from Fourier difference maps and were refined with restraints for O—H distances (0.8492–0.8612 Å) and Uiso(H) = 1.5 Ueq(O). The H atom bonded to N was also found from Fourier difference maps and were refined without a distance restraint with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound (I) showing displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for reasons of clarity.
[Figure 2] Fig. 2. Projection showing the one-dimensional structure formed by H-bonding and π-π stacking interactions of the compound (I).
(2,2'-Bipyridine-κ2N,N')hydroidxo[N-(4- tolylsulfonyl)alaninato-κ2N,O1]copper(II) hemihydrate top
Crystal data top
[Cu(C10H12NO4S)(OH)(C10H8N2)]·0.5H2OZ = 1
Mr = 976.01F(000) = 504
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.7246 (13) ÅCell parameters from 1327 reflections
b = 8.3637 (14) Åθ = 2.1–23.2°
c = 16.908 (3) ŵ = 1.19 mm1
α = 103.484 (8)°T = 291 K
β = 95.034 (6)°Block, blue
γ = 99.656 (5)°0.26 × 0.22 × 0.20 mm
V = 1038.0 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4072 independent reflections
Radiation source: sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.747, Tmax = 0.796k = 1010
9560 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.056P)2 + 0.9038P]
where P = (Fo2 + 2Fc2)/3
4072 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C10H12NO4S)(OH)(C10H8N2)]·0.5H2Oγ = 99.656 (5)°
Mr = 976.01V = 1038.0 (3) Å3
Triclinic, P1Z = 1
a = 7.7246 (13) ÅMo Kα radiation
b = 8.3637 (14) ŵ = 1.19 mm1
c = 16.908 (3) ÅT = 291 K
α = 103.484 (8)°0.26 × 0.22 × 0.20 mm
β = 95.034 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4072 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3422 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.796Rint = 0.035
9560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
4072 reflectionsΔρmin = 0.61 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8537 (6)0.7675 (5)1.0458 (3)0.0446 (10)
H1A0.82530.87511.04630.067*
H1B0.97850.77331.04420.067*
H1C0.82210.73571.09440.067*
C20.7508 (5)0.6376 (5)0.9702 (2)0.0327 (8)
C30.6895 (5)0.6833 (4)0.9015 (2)0.0294 (7)
H30.70980.79590.90110.035*
C40.5956 (5)0.5611 (4)0.8307 (2)0.0302 (7)
H40.55430.59320.78460.036*
C50.5672 (5)0.3958 (4)0.8318 (2)0.0322 (8)
C60.6244 (4)0.3509 (4)0.9002 (2)0.0276 (7)
H60.60300.23830.90050.033*
C70.7152 (4)0.4706 (5)0.9703 (2)0.0301 (7)
H70.75150.43731.01680.036*
C80.7192 (5)0.1195 (5)0.7160 (2)0.0331 (8)
H80.77110.23900.73630.040*
C90.7325 (4)0.0635 (4)0.6227 (2)0.0245 (7)
C100.3590 (5)0.3669 (4)0.4842 (2)0.0311 (7)
H100.43030.28510.46620.037*
C110.2866 (5)0.5203 (4)0.4283 (2)0.0311 (7)
H110.30900.54050.37410.037*
C120.1819 (5)0.6403 (4)0.4554 (2)0.0307 (7)
H120.13040.74310.41950.037*
C130.1538 (5)0.6068 (4)0.5363 (2)0.0335 (8)
H130.08820.68920.55620.040*
C140.2237 (5)0.4494 (4)0.5884 (2)0.0308 (7)
C150.1929 (5)0.3953 (4)0.6758 (2)0.0291 (7)
C160.0910 (4)0.5002 (4)0.7127 (2)0.0281 (7)
H160.03890.60980.68490.034*
C170.0697 (5)0.4334 (5)0.7946 (2)0.0327 (8)
H170.00560.49950.82340.039*
C180.1456 (5)0.2674 (5)0.8320 (2)0.0323 (8)
H180.13020.22080.88590.039*
C190.2419 (6)0.1734 (5)0.7903 (3)0.0430 (9)
H190.29160.06250.81670.052*
C200.8289 (5)0.0173 (5)0.7588 (2)0.0377 (8)
H20A0.80860.03450.81520.057*
H20B0.95250.05360.75640.057*
H20C0.79350.09970.73160.057*
Cu10.40834 (6)0.10913 (5)0.64296 (3)0.02818 (14)
N10.5361 (4)0.0872 (4)0.73658 (18)0.0323 (7)
H10.53920.05260.78860.039*
N20.2695 (4)0.2328 (4)0.71207 (18)0.0302 (6)
N30.3297 (4)0.3336 (4)0.56173 (18)0.0302 (6)
O10.5991 (3)0.0446 (3)0.58036 (14)0.0298 (5)
O20.8679 (3)0.1135 (3)0.59456 (15)0.0328 (6)
O30.2660 (3)0.1975 (3)0.76155 (16)0.0355 (6)
O40.4630 (3)0.3327 (3)0.67763 (15)0.0322 (5)
O50.1817 (3)0.0315 (3)0.57743 (15)0.0319 (5)
H5A0.13880.03370.61060.038*
O60.5063 (8)1.0165 (8)0.9518 (4)0.0503 (15)0.50
H6B0.50001.00001.00000.060*
H6D0.47710.92120.91770.060*0.50
S10.44638 (12)0.24873 (11)0.74314 (5)0.0321 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.040 (2)0.043 (2)0.0102 (18)0.0012 (18)0.0100 (18)
C20.0366 (19)0.0306 (18)0.0273 (17)0.0091 (15)0.0026 (14)0.0010 (14)
C30.0304 (17)0.0294 (17)0.0227 (16)0.0004 (14)0.0140 (13)0.0040 (13)
C40.0275 (17)0.0338 (18)0.0271 (17)0.0042 (14)0.0057 (14)0.0037 (14)
C50.0303 (18)0.0304 (18)0.0337 (19)0.0025 (14)0.0049 (15)0.0060 (15)
C60.0241 (16)0.0260 (16)0.0373 (18)0.0122 (13)0.0121 (14)0.0088 (14)
C70.0218 (16)0.0362 (19)0.0317 (18)0.0051 (14)0.0021 (13)0.0084 (15)
C80.0291 (18)0.0352 (19)0.0274 (17)0.0028 (15)0.0038 (14)0.0019 (15)
C90.0251 (16)0.0242 (16)0.0264 (16)0.0077 (13)0.0047 (13)0.0082 (13)
C100.0328 (18)0.0312 (18)0.0251 (17)0.0039 (14)0.0048 (14)0.0002 (14)
C110.0390 (19)0.0258 (16)0.0319 (18)0.0165 (15)0.0114 (15)0.0044 (14)
C120.0270 (17)0.0282 (17)0.0327 (18)0.0008 (14)0.0083 (14)0.0024 (14)
C130.039 (2)0.0256 (17)0.0378 (19)0.0042 (15)0.0107 (16)0.0104 (15)
C140.0249 (16)0.0294 (17)0.0312 (18)0.0083 (14)0.0032 (14)0.0036 (14)
C150.0313 (17)0.0295 (17)0.0286 (17)0.0086 (14)0.0046 (14)0.0089 (14)
C160.0289 (17)0.0205 (15)0.0296 (17)0.0011 (13)0.0007 (13)0.0004 (13)
C170.0319 (18)0.0347 (19)0.0293 (18)0.0020 (15)0.0142 (14)0.0062 (15)
C180.0286 (18)0.040 (2)0.0255 (17)0.0112 (15)0.0065 (14)0.0026 (15)
C190.041 (2)0.038 (2)0.041 (2)0.0029 (17)0.0017 (17)0.0034 (17)
C200.035 (2)0.0343 (19)0.039 (2)0.0070 (16)0.0046 (16)0.0028 (16)
Cu10.0297 (2)0.0226 (2)0.0300 (2)0.00039 (16)0.00412 (16)0.00544 (16)
N10.0294 (15)0.0388 (17)0.0254 (14)0.0103 (13)0.0039 (12)0.0010 (12)
N20.0302 (15)0.0261 (14)0.0322 (15)0.0032 (12)0.0005 (12)0.0066 (12)
N30.0303 (15)0.0246 (14)0.0346 (16)0.0000 (12)0.0029 (12)0.0093 (12)
O10.0304 (12)0.0272 (12)0.0255 (12)0.0030 (10)0.0013 (10)0.0014 (10)
O20.0292 (13)0.0290 (12)0.0360 (13)0.0079 (10)0.0113 (10)0.0070 (10)
O30.0299 (13)0.0384 (14)0.0357 (14)0.0002 (11)0.0080 (11)0.0081 (11)
O40.0275 (12)0.0432 (14)0.0314 (13)0.0119 (11)0.0123 (10)0.0137 (11)
O50.0362 (13)0.0283 (12)0.0333 (13)0.0144 (10)0.0066 (11)0.0053 (10)
O60.045 (3)0.060 (4)0.054 (4)0.004 (3)0.020 (3)0.029 (3)
S10.0347 (5)0.0279 (4)0.0305 (4)0.0019 (4)0.0049 (4)0.0038 (4)
Geometric parameters (Å, º) top
C1—C21.526 (5)C13—H130.9300
C1—H1A0.9600C14—N31.347 (4)
C1—H1B0.9600C14—C151.493 (5)
C1—H1C0.9600C15—N21.361 (4)
C2—C31.376 (5)C15—C161.375 (5)
C2—C71.378 (5)C16—C171.401 (5)
C3—C41.425 (5)C16—H160.9300
C3—H30.9300C17—C181.388 (5)
C4—C51.367 (5)C17—H170.9300
C4—H40.9300C18—C191.351 (6)
C5—C61.357 (5)C18—H180.9300
C5—S11.772 (4)C19—N21.349 (5)
C6—C71.402 (5)C19—H190.9300
C6—H60.9300C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—N11.482 (5)C20—H20C0.9600
C8—C201.549 (5)Cu1—O11.964 (2)
C8—C91.555 (5)Cu1—N21.999 (3)
C8—H80.9792Cu1—N32.012 (3)
C9—O21.236 (4)Cu1—N12.036 (3)
C9—O11.284 (4)Cu1—O52.257 (2)
C10—N31.323 (5)N1—S11.605 (3)
C10—C111.398 (5)N1—H10.9871
C10—H100.9300O3—S11.470 (3)
C11—C121.371 (5)O4—S11.447 (3)
C11—H110.9300O5—H5A0.8195
C12—C131.375 (5)O6—O6i1.722 (11)
C12—H120.9300O6—H6B0.8612
C13—C141.392 (5)O6—H6D0.8492
C2—C1—H1A109.5C15—C16—C17116.5 (3)
C2—C1—H1B109.5C15—C16—H16121.7
H1A—C1—H1B109.5C17—C16—H16121.7
C2—C1—H1C109.5C18—C17—C16119.1 (3)
H1A—C1—H1C109.5C18—C17—H17120.4
H1B—C1—H1C109.5C16—C17—H17120.4
C3—C2—C7118.5 (3)C19—C18—C17120.0 (3)
C3—C2—C1121.5 (3)C19—C18—H18120.0
C7—C2—C1120.0 (3)C17—C18—H18120.0
C2—C3—C4121.1 (3)N2—C19—C18123.1 (4)
C2—C3—H3119.4N2—C19—H19118.4
C4—C3—H3119.4C18—C19—H19118.4
C5—C4—C3119.0 (3)C8—C20—H20A109.5
C5—C4—H4120.5C8—C20—H20B109.5
C3—C4—H4120.5H20A—C20—H20B109.5
C6—C5—C4120.0 (3)C8—C20—H20C109.5
C6—C5—S1122.6 (3)H20A—C20—H20C109.5
C4—C5—S1117.3 (3)H20B—C20—H20C109.5
C5—C6—C7121.4 (3)O1—Cu1—N2159.44 (11)
C5—C6—H6119.3O1—Cu1—N391.52 (11)
C7—C6—H6119.3N2—Cu1—N380.58 (12)
C2—C7—C6120.0 (3)O1—Cu1—N186.23 (11)
C2—C7—H7120.0N2—Cu1—N196.46 (12)
C6—C7—H7120.0N3—Cu1—N1164.93 (12)
N1—C8—C20107.7 (3)O1—Cu1—O5100.11 (10)
N1—C8—C9113.9 (3)N2—Cu1—O598.22 (11)
C20—C8—C9106.9 (3)N3—Cu1—O585.79 (11)
N1—C8—H8109.8N1—Cu1—O5109.28 (11)
C20—C8—H8109.3C8—N1—S1111.6 (3)
C9—C8—H8109.0C8—N1—Cu1103.8 (2)
O2—C9—O1124.2 (3)S1—N1—Cu1111.98 (16)
O2—C9—C8120.9 (3)C8—N1—H1108.8
O1—C9—C8114.7 (3)S1—N1—H1110.9
N3—C10—C11122.5 (3)Cu1—N1—H1109.5
N3—C10—H10118.8C19—N2—C15116.3 (3)
C11—C10—H10118.8C19—N2—Cu1127.5 (3)
C12—C11—C10118.4 (3)C15—N2—Cu1116.2 (2)
C12—C11—H11120.8C10—N3—C14119.5 (3)
C10—C11—H11120.8C10—N3—Cu1124.9 (2)
C11—C12—C13119.2 (3)C14—N3—Cu1115.2 (2)
C11—C12—H12120.4C9—O1—Cu1115.1 (2)
C13—C12—H12120.4Cu1—O5—H5A109.6
C12—C13—C14119.9 (3)O6i—O6—H6D107.0
C12—C13—H13120.1H6B—O6—H6D107.0
C14—C13—H13120.1O4—S1—O3116.61 (15)
N3—C14—C13120.4 (3)O4—S1—N1116.92 (16)
N3—C14—C15114.9 (3)O3—S1—N1105.54 (16)
C13—C14—C15124.6 (3)O4—S1—C5105.06 (16)
N2—C15—C16124.9 (3)O3—S1—C5107.62 (16)
N2—C15—C14113.0 (3)N1—S1—C5104.07 (17)
C16—C15—C14122.1 (3)
C7—C2—C3—C41.7 (5)C14—C15—N2—C19177.8 (3)
C1—C2—C3—C4179.1 (3)C16—C15—N2—Cu1179.3 (3)
C2—C3—C4—C50.3 (5)C14—C15—N2—Cu11.8 (4)
C3—C4—C5—C61.6 (5)O1—Cu1—N2—C19111.7 (4)
C3—C4—C5—S1178.9 (2)N3—Cu1—N2—C19179.7 (3)
C4—C5—C6—C70.9 (5)N1—Cu1—N2—C1915.2 (3)
S1—C5—C6—C7178.1 (3)O5—Cu1—N2—C1995.4 (3)
C3—C2—C7—C62.4 (5)O1—Cu1—N2—C1568.8 (4)
C1—C2—C7—C6178.5 (3)N3—Cu1—N2—C150.3 (2)
C5—C6—C7—C21.1 (5)N1—Cu1—N2—C15165.3 (2)
N1—C8—C9—O2164.5 (3)O5—Cu1—N2—C1584.1 (2)
C20—C8—C9—O276.6 (4)C11—C10—N3—C141.3 (5)
N1—C8—C9—O119.9 (4)C11—C10—N3—Cu1173.6 (3)
C20—C8—C9—O198.9 (3)C13—C14—N3—C103.8 (5)
N3—C10—C11—C120.1 (5)C15—C14—N3—C10177.1 (3)
C10—C11—C12—C130.9 (5)C13—C14—N3—Cu1176.8 (3)
C11—C12—C13—C143.4 (6)C15—C14—N3—Cu14.1 (4)
C12—C13—C14—N34.9 (6)O1—Cu1—N3—C1024.1 (3)
C12—C13—C14—C15176.1 (4)N2—Cu1—N3—C10175.0 (3)
N3—C14—C15—N23.8 (5)N1—Cu1—N3—C10105.2 (5)
C13—C14—C15—N2177.1 (3)O5—Cu1—N3—C1076.0 (3)
N3—C14—C15—C16178.6 (3)O1—Cu1—N3—C14163.4 (3)
C13—C14—C15—C160.4 (6)N2—Cu1—N3—C142.5 (3)
N2—C15—C16—C171.6 (5)N1—Cu1—N3—C1482.2 (5)
C14—C15—C16—C17178.9 (3)O5—Cu1—N3—C1496.6 (3)
C15—C16—C17—C182.2 (5)O2—C9—O1—Cu1176.8 (3)
C16—C17—C18—C191.5 (6)C8—C9—O1—Cu11.3 (4)
C17—C18—C19—N20.1 (6)N2—Cu1—O1—C986.9 (4)
C20—C8—N1—S1147.0 (2)N3—Cu1—O1—C9153.6 (2)
C9—C8—N1—S194.7 (3)N1—Cu1—O1—C911.5 (2)
C20—C8—N1—Cu192.3 (3)O5—Cu1—O1—C9120.4 (2)
C9—C8—N1—Cu126.1 (3)C8—N1—S1—O447.1 (3)
O1—Cu1—N1—C820.3 (2)Cu1—N1—S1—O468.8 (2)
N2—Cu1—N1—C8139.2 (2)C8—N1—S1—O3178.6 (2)
N3—Cu1—N1—C861.5 (5)Cu1—N1—S1—O362.71 (19)
O5—Cu1—N1—C8119.7 (2)C8—N1—S1—C568.2 (3)
O1—Cu1—N1—S1100.20 (17)Cu1—N1—S1—C5175.89 (16)
N2—Cu1—N1—S1100.27 (18)C6—C5—S1—O4161.3 (3)
N3—Cu1—N1—S1178.0 (4)C4—C5—S1—O421.4 (3)
O5—Cu1—N1—S10.8 (2)C6—C5—S1—O373.8 (3)
C18—C19—N2—C150.6 (6)C4—C5—S1—O3103.5 (3)
C18—C19—N2—Cu1180.0 (3)C6—C5—S1—N137.9 (3)
C16—C15—N2—C190.3 (5)C4—C5—S1—N1144.8 (3)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C10H12NO4S)(OH)(C10H8N2)]·0.5H2O
Mr976.01
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7246 (13), 8.3637 (14), 16.908 (3)
α, β, γ (°)103.484 (8), 95.034 (6), 99.656 (5)
V3)1038.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.747, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
9560, 4072, 3422
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.09
No. of reflections4072
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant No. 2008 F5053) and the Master Construction Project of Quanzhou Normal University.

References

First citationAntolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.  CSD CrossRef CAS Web of Science Google Scholar
First citationBattaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 1902–1906.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin,USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationLiang, F.-P., Chen, M.-S., Hu, R.-X. & Chen, Z.-L. (2004). Acta Cryst. C60, m269–m271.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, L.-F., Wang, L.-Y., Huo, X.-K., Wang, Y.-Y., Fan, Y.-T., Wang, J.-G. & Chen, S.-H. (2008). Cryst. Growth Des. 8, 620–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMenabue, L. & Saladini, M. (1991). Inorg. Chem. 30, 1651–1655.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds