organic compounds
2α,8α-Diacetoxy-cis-himachalane
aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16,Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: abenharref@yahoo.fr
The title compound, C19H32O4, was synthesized from γ-himachalene, wich was isolated from essential oils of Cedrus atlantica. The molecule is built up from two fused six- and seven-membered rings. The six-membered ring has a screw-boat conformation, whereas the seven-membered ring displays a half-chair conformation; the dihedral angle between the mean planes of the rings is 61.99 (6)°.
Related literature
For background to γ-himachalene derivatives, see: Lassaba et al. (1998); Plattier & Teisseire (1974); Plattier et al. (1974). For a related structure, see: Chiaroni et al. (1996). For ring puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681003727X/im2232sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681003727X/im2232Isup2.hkl
To a solution of 1 g of the mixture of two isomers of cis-himachal-2,8-diol (prepared from γ-himachalene) in 30 ml of pyridine was added 20 ml of acetic anhydride. The mixture is stirred overnight at room temperature, then treated with 100 ml of ice water. The reaction mixture was extracted three times with 30 ml of ether. The organic phases obtained are dried over sodium sulfate and then concentrated under vacuum. The residue obtained is chromatographed on silica gel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (95–5) used as The two 2α,8α-diacetoxy-cis-himachalane (X) and 2α,8β-diacetoxy-cis-himachalane (Y) are obtained by this procedure in a 80/20 ratio and a combined yield of 98%. The title compound (isomer X) is recrystallized from a mixture of hexane and ethyle acetate (40/60).
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine) with Uiso(H) = 1.2 Ueq(CH2, CH) or Uiso(H) = 1.5 Ueq(CH3). In the absence of significant
the could not be reliably determined and thus 1705 Friedel pairs were merged and any references to the were removed.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C19H32O4 | F(000) = 356 |
Mr = 324.45 | Dx = 1.172 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 8181 reflections |
a = 5.9316 (2) Å | θ = 3.5–29.2° |
b = 11.7720 (3) Å | µ = 0.08 mm−1 |
c = 13.3535 (4) Å | T = 180 K |
β = 99.603 (3)° | Box, colourless |
V = 919.37 (5) Å3 | 0.75 × 0.45 × 0.23 mm |
Z = 2 |
Oxford Diffraction Xcalibur Eos Gemini Ultra diffractometer | 1976 independent reflections |
Radiation source: fine-focus sealed tube | 1894 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.5° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −14→14 |
Tmin = 0.799, Tmax = 1.000 | l = 0→16 |
3681 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.0959P] where P = (Fo2 + 2Fc2)/3 |
1976 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.17 e Å−3 |
1 restraint | Δρmin = −0.14 e Å−3 |
C19H32O4 | V = 919.37 (5) Å3 |
Mr = 324.45 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.9316 (2) Å | µ = 0.08 mm−1 |
b = 11.7720 (3) Å | T = 180 K |
c = 13.3535 (4) Å | 0.75 × 0.45 × 0.23 mm |
β = 99.603 (3)° |
Oxford Diffraction Xcalibur Eos Gemini Ultra diffractometer | 1976 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1894 reflections with I > 2σ(I) |
Tmin = 0.799, Tmax = 1.000 | Rint = 0.012 |
3681 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.17 e Å−3 |
1976 reflections | Δρmin = −0.14 e Å−3 |
214 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction 2010) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0099 (3) | 0.89742 (14) | 0.20021 (12) | 0.0220 (3) | |
H1 | 0.1630 | 0.8831 | 0.1845 | 0.026* | |
C2 | −0.1412 (3) | 0.92089 (14) | 0.09491 (12) | 0.0245 (3) | |
H2 | −0.2622 | 0.8634 | 0.0827 | 0.029* | |
C3 | −0.2509 (3) | 1.03856 (15) | 0.08423 (12) | 0.0270 (4) | |
H3 | −0.1305 | 1.0954 | 0.0833 | 0.032* | |
C4 | −0.3655 (3) | 1.05982 (16) | 0.17728 (13) | 0.0286 (4) | |
H4A | −0.4791 | 1.0013 | 0.1805 | 0.034* | |
H4B | −0.4441 | 1.1323 | 0.1694 | 0.034* | |
C5 | −0.1940 (3) | 1.06035 (16) | 0.27780 (12) | 0.0271 (4) | |
H5A | −0.1699 | 1.1378 | 0.3020 | 0.033* | |
H5B | −0.2567 | 1.0173 | 0.3287 | 0.033* | |
C6 | 0.0352 (3) | 1.00838 (14) | 0.26315 (12) | 0.0226 (3) | |
H6 | 0.0943 | 1.0628 | 0.2183 | 0.027* | |
C7 | 0.2205 (3) | 1.00777 (15) | 0.35903 (12) | 0.0254 (3) | |
H7 | 0.3489 | 0.9630 | 0.3427 | 0.030* | |
C8 | 0.1503 (3) | 0.95438 (17) | 0.45333 (12) | 0.0289 (4) | |
H8 | 0.0556 | 1.0087 | 0.4834 | 0.035* | |
C9 | 0.0274 (3) | 0.84093 (19) | 0.44034 (13) | 0.0354 (4) | |
H9A | −0.1359 | 0.8555 | 0.4284 | 0.042* | |
H9B | 0.0630 | 0.7996 | 0.5038 | 0.042* | |
C10 | 0.0816 (3) | 0.76424 (16) | 0.35535 (13) | 0.0311 (4) | |
H10A | 0.0590 | 0.6861 | 0.3744 | 0.037* | |
H10B | 0.2424 | 0.7731 | 0.3512 | 0.037* | |
C11 | −0.0575 (3) | 0.78409 (15) | 0.24849 (13) | 0.0253 (3) | |
C12 | −0.4260 (3) | 1.05045 (19) | −0.01273 (14) | 0.0386 (4) | |
H12A | −0.3562 | 1.0307 | −0.0703 | 0.058* | |
H12B | −0.4794 | 1.1275 | −0.0195 | 0.058* | |
H12C | −0.5527 | 1.0006 | −0.0095 | 0.058* | |
C13 | 0.3102 (3) | 1.12841 (17) | 0.38390 (15) | 0.0341 (4) | |
H13 | 0.1879 | 1.1755 | 0.3989 | 0.051* | |
H13A | 0.3684 | 1.1590 | 0.3267 | 0.051* | |
H13B | 0.4303 | 1.1262 | 0.4417 | 0.051* | |
C14 | −0.3141 (3) | 0.77332 (17) | 0.25420 (14) | 0.0307 (4) | |
H14A | −0.4009 | 0.7725 | 0.1867 | 0.046* | |
H14B | −0.3609 | 0.8367 | 0.2911 | 0.046* | |
H14C | −0.3404 | 0.7040 | 0.2883 | 0.046* | |
C15 | 0.0020 (3) | 0.68616 (16) | 0.18139 (14) | 0.0331 (4) | |
H15A | −0.0356 | 0.6151 | 0.2097 | 0.050* | |
H15B | 0.1625 | 0.6880 | 0.1784 | 0.050* | |
H15C | −0.0838 | 0.6942 | 0.1142 | 0.050* | |
C16 | −0.0647 (3) | 0.84124 (16) | −0.06239 (13) | 0.0300 (4) | |
C17 | 0.1060 (4) | 0.84018 (18) | −0.13319 (14) | 0.0380 (4) | |
H17A | 0.2502 | 0.8131 | −0.0978 | 0.057* | |
H17B | 0.1242 | 0.9158 | −0.1576 | 0.057* | |
H17C | 0.0531 | 0.7910 | −0.1896 | 0.057* | |
C18 | 0.3634 (3) | 0.95040 (18) | 0.62200 (13) | 0.0362 (4) | |
C19 | 0.5969 (4) | 0.9380 (2) | 0.68344 (16) | 0.0516 (6) | |
H19A | 0.5892 | 0.8902 | 0.7410 | 0.077* | |
H19B | 0.6542 | 1.0114 | 0.7064 | 0.077* | |
H19C | 0.6974 | 0.9044 | 0.6424 | 0.077* | |
O1 | 0.0055 (2) | 0.90900 (10) | 0.01763 (9) | 0.0275 (3) | |
O2 | −0.2420 (3) | 0.78940 (14) | −0.07569 (10) | 0.0456 (4) | |
O3 | 0.3679 (2) | 0.93985 (13) | 0.52241 (9) | 0.0338 (3) | |
O4 | 0.1927 (3) | 0.96866 (19) | 0.65590 (11) | 0.0572 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0175 (7) | 0.0237 (8) | 0.0255 (7) | −0.0015 (6) | 0.0060 (6) | −0.0003 (7) |
C2 | 0.0232 (7) | 0.0266 (9) | 0.0246 (8) | −0.0040 (6) | 0.0071 (6) | −0.0009 (6) |
C3 | 0.0260 (8) | 0.0290 (9) | 0.0267 (8) | 0.0013 (7) | 0.0066 (6) | 0.0031 (7) |
C4 | 0.0235 (8) | 0.0306 (9) | 0.0330 (9) | 0.0040 (7) | 0.0084 (6) | 0.0037 (8) |
C5 | 0.0252 (8) | 0.0301 (9) | 0.0280 (8) | 0.0020 (7) | 0.0100 (6) | −0.0012 (7) |
C6 | 0.0217 (7) | 0.0240 (8) | 0.0236 (7) | −0.0017 (6) | 0.0081 (6) | 0.0001 (6) |
C7 | 0.0220 (8) | 0.0302 (9) | 0.0250 (8) | −0.0013 (7) | 0.0073 (6) | −0.0035 (7) |
C8 | 0.0249 (8) | 0.0396 (10) | 0.0230 (8) | 0.0014 (8) | 0.0060 (6) | −0.0020 (8) |
C9 | 0.0334 (9) | 0.0472 (11) | 0.0267 (9) | −0.0070 (9) | 0.0089 (7) | 0.0054 (9) |
C10 | 0.0305 (8) | 0.0294 (9) | 0.0333 (9) | −0.0020 (7) | 0.0052 (7) | 0.0067 (8) |
C11 | 0.0228 (7) | 0.0239 (8) | 0.0293 (8) | −0.0013 (7) | 0.0050 (6) | 0.0015 (7) |
C12 | 0.0380 (10) | 0.0430 (11) | 0.0326 (9) | 0.0067 (9) | −0.0009 (7) | 0.0047 (9) |
C13 | 0.0315 (9) | 0.0360 (10) | 0.0360 (10) | −0.0064 (8) | 0.0092 (7) | −0.0082 (8) |
C14 | 0.0253 (8) | 0.0303 (9) | 0.0371 (9) | −0.0061 (7) | 0.0066 (7) | 0.0048 (8) |
C15 | 0.0358 (9) | 0.0248 (9) | 0.0388 (10) | −0.0002 (7) | 0.0066 (8) | −0.0002 (8) |
C16 | 0.0406 (9) | 0.0248 (8) | 0.0236 (8) | −0.0001 (8) | 0.0027 (7) | 0.0002 (7) |
C17 | 0.0534 (12) | 0.0319 (10) | 0.0309 (9) | 0.0023 (9) | 0.0133 (8) | −0.0034 (8) |
C18 | 0.0507 (11) | 0.0320 (10) | 0.0248 (8) | −0.0009 (9) | 0.0034 (8) | −0.0017 (8) |
C19 | 0.0615 (14) | 0.0486 (13) | 0.0372 (11) | −0.0010 (11) | −0.0137 (9) | −0.0020 (10) |
O1 | 0.0289 (6) | 0.0309 (7) | 0.0242 (6) | −0.0041 (5) | 0.0086 (5) | −0.0040 (5) |
O2 | 0.0528 (8) | 0.0469 (9) | 0.0364 (7) | −0.0179 (7) | 0.0053 (6) | −0.0092 (7) |
O3 | 0.0298 (6) | 0.0464 (8) | 0.0246 (6) | 0.0022 (6) | 0.0024 (5) | −0.0034 (6) |
O4 | 0.0629 (10) | 0.0831 (13) | 0.0278 (7) | 0.0126 (10) | 0.0140 (7) | −0.0011 (8) |
C1—C6 | 1.547 (2) | C10—H10A | 0.9700 |
C1—C2 | 1.561 (2) | C10—H10B | 0.9700 |
C1—C11 | 1.562 (2) | C11—C15 | 1.537 (3) |
C1—H1 | 0.9800 | C11—C14 | 1.542 (2) |
C2—O1 | 1.4632 (19) | C12—H12A | 0.9600 |
C2—C3 | 1.527 (2) | C12—H12B | 0.9600 |
C2—H2 | 0.9800 | C12—H12C | 0.9600 |
C3—C12 | 1.525 (2) | C13—H13 | 0.9600 |
C3—C4 | 1.533 (2) | C13—H13A | 0.9600 |
C3—H3 | 0.9800 | C13—H13B | 0.9600 |
C4—C5 | 1.543 (2) | C14—H14A | 0.9600 |
C4—H4A | 0.9700 | C14—H14B | 0.9600 |
C4—H4B | 0.9700 | C14—H14C | 0.9600 |
C5—C6 | 1.533 (2) | C15—H15A | 0.9600 |
C5—H5A | 0.9700 | C15—H15B | 0.9600 |
C5—H5B | 0.9700 | C15—H15C | 0.9600 |
C6—C7 | 1.542 (2) | C16—O2 | 1.203 (2) |
C6—H6 | 0.9800 | C16—O1 | 1.343 (2) |
C7—C8 | 1.526 (2) | C16—C17 | 1.496 (3) |
C7—C13 | 1.533 (3) | C17—H17A | 0.9600 |
C7—H7 | 0.9800 | C17—H17B | 0.9600 |
C8—O3 | 1.466 (2) | C17—H17C | 0.9600 |
C8—C9 | 1.518 (3) | C18—O4 | 1.195 (2) |
C8—H8 | 0.9800 | C18—O3 | 1.340 (2) |
C9—C10 | 1.526 (3) | C18—C19 | 1.495 (3) |
C9—H9A | 0.9700 | C19—H19A | 0.9600 |
C9—H9B | 0.9700 | C19—H19B | 0.9600 |
C10—C11 | 1.542 (2) | C19—H19C | 0.9600 |
C6—C1—C2 | 109.21 (13) | C9—C10—H10A | 108.1 |
C6—C1—C11 | 120.34 (13) | C11—C10—H10A | 108.1 |
C2—C1—C11 | 112.02 (13) | C9—C10—H10B | 108.1 |
C6—C1—H1 | 104.6 | C11—C10—H10B | 108.1 |
C2—C1—H1 | 104.6 | H10A—C10—H10B | 107.3 |
C11—C1—H1 | 104.6 | C15—C11—C14 | 106.96 (14) |
O1—C2—C3 | 108.37 (13) | C15—C11—C10 | 106.64 (14) |
O1—C2—C1 | 107.38 (12) | C14—C11—C10 | 108.78 (14) |
C3—C2—C1 | 114.61 (14) | C15—C11—C1 | 107.49 (13) |
O1—C2—H2 | 108.8 | C14—C11—C1 | 114.41 (14) |
C3—C2—H2 | 108.8 | C10—C11—C1 | 112.14 (14) |
C1—C2—H2 | 108.8 | C3—C12—H12A | 109.5 |
C12—C3—C2 | 112.44 (15) | C3—C12—H12B | 109.5 |
C12—C3—C4 | 109.97 (14) | H12A—C12—H12B | 109.5 |
C2—C3—C4 | 108.18 (14) | C3—C12—H12C | 109.5 |
C12—C3—H3 | 108.7 | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 108.7 | H12B—C12—H12C | 109.5 |
C4—C3—H3 | 108.7 | C7—C13—H13 | 109.5 |
C3—C4—C5 | 112.86 (13) | C7—C13—H13A | 109.5 |
C3—C4—H4A | 109.0 | H13—C13—H13A | 109.5 |
C5—C4—H4A | 109.0 | C7—C13—H13B | 109.5 |
C3—C4—H4B | 109.0 | H13—C13—H13B | 109.5 |
C5—C4—H4B | 109.0 | H13A—C13—H13B | 109.5 |
H4A—C4—H4B | 107.8 | C11—C14—H14A | 109.5 |
C6—C5—C4 | 110.94 (13) | C11—C14—H14B | 109.5 |
C6—C5—H5A | 109.5 | H14A—C14—H14B | 109.5 |
C4—C5—H5A | 109.5 | C11—C14—H14C | 109.5 |
C6—C5—H5B | 109.5 | H14A—C14—H14C | 109.5 |
C4—C5—H5B | 109.5 | H14B—C14—H14C | 109.5 |
H5A—C5—H5B | 108.0 | C11—C15—H15A | 109.5 |
C5—C6—C7 | 114.85 (13) | C11—C15—H15B | 109.5 |
C5—C6—C1 | 113.48 (13) | H15A—C15—H15B | 109.5 |
C7—C6—C1 | 116.00 (13) | C11—C15—H15C | 109.5 |
C5—C6—H6 | 103.4 | H15A—C15—H15C | 109.5 |
C7—C6—H6 | 103.4 | H15B—C15—H15C | 109.5 |
C1—C6—H6 | 103.4 | O2—C16—O1 | 124.46 (16) |
C8—C7—C13 | 109.58 (15) | O2—C16—C17 | 124.71 (17) |
C8—C7—C6 | 115.63 (13) | O1—C16—C17 | 110.82 (15) |
C13—C7—C6 | 110.43 (14) | C16—C17—H17A | 109.5 |
C8—C7—H7 | 106.9 | C16—C17—H17B | 109.5 |
C13—C7—H7 | 106.9 | H17A—C17—H17B | 109.5 |
C6—C7—H7 | 106.9 | C16—C17—H17C | 109.5 |
O3—C8—C9 | 108.97 (15) | H17A—C17—H17C | 109.5 |
O3—C8—C7 | 103.58 (13) | H17B—C17—H17C | 109.5 |
C9—C8—C7 | 117.39 (14) | O4—C18—O3 | 123.42 (18) |
O3—C8—H8 | 108.9 | O4—C18—C19 | 125.14 (18) |
C9—C8—H8 | 108.9 | O3—C18—C19 | 111.43 (18) |
C7—C8—H8 | 108.9 | C18—C19—H19A | 109.5 |
C8—C9—C10 | 116.66 (15) | C18—C19—H19B | 109.5 |
C8—C9—H9A | 108.1 | H19A—C19—H19B | 109.5 |
C10—C9—H9A | 108.1 | C18—C19—H19C | 109.5 |
C8—C9—H9B | 108.1 | H19A—C19—H19C | 109.5 |
C10—C9—H9B | 108.1 | H19B—C19—H19C | 109.5 |
H9A—C9—H9B | 107.3 | C16—O1—C2 | 118.45 (13) |
C9—C10—C11 | 116.86 (15) | C18—O3—C8 | 116.89 (14) |
Experimental details
Crystal data | |
Chemical formula | C19H32O4 |
Mr | 324.45 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 180 |
a, b, c (Å) | 5.9316 (2), 11.7720 (3), 13.3535 (4) |
β (°) | 99.603 (3) |
V (Å3) | 919.37 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.75 × 0.45 × 0.23 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos Gemini Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.799, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3681, 1976, 1894 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.079, 1.06 |
No. of reflections | 1976 |
No. of parameters | 214 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.14 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors gratefully acknowledge financial support from the CNRST of Morroco.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chiaroni, A., Riche, C., Lassaba, E. & Benharref, A. (1996). Acta Cryst. C52, 3240–3243. CSD CrossRef Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J. P. (1998). Synth. Commun. 28, 2641–2651. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Plattier, M., Rouillier, P. & Teisseire, P. (1974). Recherche, 19, 145–151. CAS Google Scholar
Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound γ- himachalene (Plattier & Teisseire, 1974). This compound is a minority product of the mixture of hydrocarbons of essential oil of the Atlas Cedar (Cedrus atlantica), isolated by Plattier et al. (1974). Literature provides only a few articles on the reactivity of this sesquiterpene, namely its hydrochlorination (Plattier & Teisseire, 1974), its hydroboration (Plattier et al., 1974) and its epoxidation (Chiaroni et al.,1996; Lassaba et al., 1998). Thus the action of two equivalents of diborane followed by oxidation with hydrogen peroxide and soda leads to two diasterioisomers: cis-himachal-2α,8α-diol and cis-himachal-2α,8β-diol. In order to prepare products with high added value, we have treated the mixture of these two isomers with the acetic anhydride in pyridine (see experimental) and obtained a mixture of two isomers (X) and (Y) with a combined yield of 98%. A study of spectral analysis of 1H NMR, 13C NMR and mass spectrometry did not allow us to differentiate between the structures of both isomers. Nevertheless, a X-ray crystallographic study of a single-crystal of (X) has allowed its identification as 2α,8α-diacetoxy-cis-himachalane (Scheme 1) and distinguish it from its isomer (Y), which is 2α,8β-diacetoxy-cis-himachalane. The molecule (Fig.1) is built up from two fused six- and seven-membered rings with the acetoxy groups at positions 2 and 8 in α-configuration. The six-membered ring has a screw boat conformation as indicated by the total puckering amplitude QT = 0.7585 (12) Å and a spherical polar angle of θ= 92.06 (9)° with ϕ= 71.42 (9)°. The seven-membered ring displays a half chair conformation with QT =0.8062 (13) Å, θ = 42.17 (9)°, ϕ2 = -26.97 (14)° and ϕ3 = 169.95 (13)° (Cremer & Pople, 1975).