organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(4-Chloro­phen­yl)(phenyl­imino)­meth­yl]-7-meth­­oxy-2-naphthol–1,4-di­aza­bi­cyclo­[2.2.2]octane (2/1)

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 24 August 2010; accepted 28 August 2010; online 4 September 2010)

In the crystal structure of the title cocrystal, 2C24H18ClNO2·C6H12N2, the 1,4-diaza­bicyclo­[2.2.2]octane mol­ecule is located on a twofold rotation axis and linked to the two triaryl­imine mol­ecules by O—H⋯N hydrogen bonds, forming a 2:1 aggregate. C—H⋯Cl inter­actions are also observed. In the triaryl­imine mol­ecule, the naphthalene ring system makes dihedral angles of 80.39 (6) and 82.35 (6)°, respectively, with the phenyl and benzene rings. The dihedral angle between these two latter rings is 87.09 (7)°.

Related literature

For our study of the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene and peri-aroyl­naphthalene compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Hijikata et al. (2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.]); Mitsui, Nakaema, Noguchi & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Watanabe, Nakaema, Muto et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]); Watanabe, Nakaema, Nishijima et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18ClNO2·0.5C6H12N2

  • Mr = 443.93

  • Monoclinic, C 2/c

  • a = 25.0027 (5) Å

  • b = 9.92298 (18) Å

  • c = 20.0052 (4) Å

  • β = 114.621 (1)°

  • V = 4512.07 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.71 mm−1

  • T = 193 K

  • 0.60 × 0.50 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.381, Tmax = 0.548

  • 39753 measured reflections

  • 4125 independent reflections

  • 3831 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 4125 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.89 (2) 1.86 (2) 2.7401 (18) 167.2 (18)
C20—H20⋯Cl1ii 0.95 2.78 3.6071 (17) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010).

The aroyl groups in these compounds are bonded almost perpendicularly to the naphthalene rings at the 1,8-positions but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Moreover, the X-ray crystal structural analyses of 1-(4-substituted benzoylated)naphthalenes, i.e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Okamoto & Yonezawa, 2008), 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010), have also revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Contrarily, the benzene ring of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) is bonded to the naphthalene ring with nearly coplanar configuration in the opposite direction against the 2-hydroxy group. This crystal structure is stabilized by intramolecular hydrogen bond between 2-hydroxy group and the carbonyl group.

As a part of our continuous study on the molecular structures of this kind of homologous molecules, we have investigated imination of aroylated naphthalene derivatives. Triarylimine has been clarified to be synthesized effectively by imination with the aid of TiCl4 and 1,4-diazabicyclo[2.2.2]octane (DABCO). The cocrystal of triarylimines and DABCO (2/1) was prepared directly from the reaction mixture.

An ORTEPIII (Burnett & Johnson, 1996) plot of the title cocrystal is shown in Fig. 1. In the crystal packing, one DABCO molecule is connected to two triarylimine molecules with two O—H···N hydrogen bonds (Fig. 2). The 2:1 comolecular unit of triarylimines and DABCO have twofold rotation symmetry, with the central DABCO molecule lying on the rotation axis. In triarylimine of the comolecular unit, the interplanar angles of phenyl ring (C18–C23) attached to nitrogen atom (N1) and benzene ring (C12–C17) attached to carbon atom (C11) against the naphthalene ring (C1–C10) are 80.39 (6) and 82.35 (6)°, respectively. Furthermore, the interplanar angle between the phenyl and benzene rings is 87.09 (7)°.

The molecular packing is mainly stabilized by intermolecular hydrogen bonds and van der Waals interactions. Triarylimine and DABCO are linked with intermolecular O—H···N hydrogen bond [O1—H1···N2 = 1.86 (2) Å]. The 2:1 comolecular units are aligned along the a axis (Fig. 3). The C—H···π interaction between the methylene hydrogen atom of DABCO molecule and the naphthalene ring is observed along the c axis [C5···H25A = 2.69 Å]. Furthermore, the hydrogen bond between the chlorine atom and the hydrogen atom of the phenyl ring (C18–C23) is observed along the b axis [Cl1···H20 = 2.78 Å].

Related literature top

For related structures, see: Hijikata et al. (2010); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui, Nakaema, Noguchi, Okamoto, A. & Yonez (2008); Watanabe, Nakaema, Muto et al. (2010); Watanabe, Nakaema, Nishijima et al. (2010). For our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009).

Experimental top

To a solution of 1-(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene (0.2 mmol, 62.8 mg) in chlorobenzene (1 ml), a mixture of aniline (0.22 mmol, 20.5 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtrated to remove the precipitate. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystallization from CHCl3/n-hexane to give the cocrystal of triarylimines and DABCO (2/1) as colorless block (m.p. 445.6–446.0 K, yield 19.5 mg, 22%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.13, (s, 1H), 7.66–7.60 (m, 4H), 7.44 (d, 2H), 7.00 (t, 2H), 6.95 (d, 1H), 6.86–6.76 (m, 4H), 6.52 (d, 1H), 3.64 (s, 3H), 3.29 (s, 6H); 13C NMR (75 MHz, DMSO-d6) 164.4, 158.2, 153.7, 151.0, 137.6, 135.7, 132.2, 130.3, 130.0, 129.7, 128.7, 128.2, 123.8, 122.9, 119.2, 115.1, 115.0, 114.9, 102.6, 55.1, 47.3; IR (KBr): 3407, 2937, 2592, 1625, 1585, 1509, 1227; HRMS (m/z): [M + H]+ calcd for C24H19ClNO2, 388.1110; found, 388.1104.

Refinement top

All the H-atoms could be located in difference Fourier maps. The O—H hydrogen atom was freely refined: O1—H1 = 0.89 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the cocrystal of triarylimine and DABCO, showing 50% probability displacement ellipsoids [symmetry code: (i) 1 - x, y, 3/2 - z].
[Figure 2] Fig. 2. The 2:1 comolecular unit of triarylimines and DABCO [symmetry codes: (i) 1 - x, y, -z; (ii) 1 - x, -y, 1 - z; (iii) x, -y, -1/2 + z]. The intermolecular O—H···N hydrogen bond are shown as dashed lines.
[Figure 3] Fig. 3. A partial crystal packing diagram of the cocrystal of triarylimine and DABCO, viewed down the b axis. The intermolecular O—H···N hydrogen bond are shown as dashed lines.
1-[(4-Chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol– 1,4-diazabicyclo[2.2.2]octane (2/1) top
Crystal data top
C24H18ClNO2·0.5C6H12N2F(000) = 1864
Mr = 443.93Dx = 1.307 Mg m3
Monoclinic, C2/cMelting point = 445.6–446.0 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54187 Å
a = 25.0027 (5) ÅCell parameters from 33487 reflections
b = 9.92298 (18) Åθ = 3.6–68.2°
c = 20.0052 (4) ŵ = 1.71 mm1
β = 114.621 (1)°T = 193 K
V = 4512.07 (16) Å3Block, colorless
Z = 80.60 × 0.50 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4125 independent reflections
Radiation source: rotating anode3831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.9°
ω scansh = 3030
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.381, Tmax = 0.548l = 2424
39753 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0539P)2 + 2.6288P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4125 reflectionsΔρmax = 0.44 e Å3
295 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00076 (6)
Crystal data top
C24H18ClNO2·0.5C6H12N2V = 4512.07 (16) Å3
Mr = 443.93Z = 8
Monoclinic, C2/cCu Kα radiation
a = 25.0027 (5) ŵ = 1.71 mm1
b = 9.92298 (18) ÅT = 193 K
c = 20.0052 (4) Å0.60 × 0.50 × 0.40 mm
β = 114.621 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4125 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3831 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.548Rint = 0.026
39753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
4125 reflectionsΔρmin = 0.32 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.091242 (19)0.01553 (5)0.13553 (2)0.06399 (16)
O10.39706 (5)0.09386 (10)0.35831 (6)0.0414 (3)
O20.27685 (5)0.16378 (10)0.60663 (6)0.0454 (3)
N10.30621 (5)0.22752 (11)0.43787 (6)0.0334 (3)
N20.52801 (5)0.05890 (12)0.70856 (6)0.0364 (3)
C10.35467 (5)0.01095 (12)0.43518 (7)0.0285 (3)
C20.39665 (6)0.00014 (13)0.40731 (7)0.0320 (3)
C30.43819 (6)0.10588 (14)0.43064 (8)0.0372 (3)
H30.46840.11020.41360.045*
C40.43495 (6)0.20190 (14)0.47761 (8)0.0369 (3)
H40.46230.27430.49160.044*
C50.39191 (6)0.19608 (13)0.50592 (7)0.0319 (3)
C60.38745 (6)0.29572 (14)0.55401 (8)0.0381 (3)
H60.41230.37260.56500.046*
C70.34832 (7)0.28366 (14)0.58474 (8)0.0393 (3)
H70.34580.35180.61670.047*
C80.31135 (6)0.16910 (14)0.56896 (7)0.0345 (3)
C90.31213 (6)0.07365 (13)0.51986 (7)0.0311 (3)
H90.28570.00040.50790.037*
C100.35246 (5)0.08518 (12)0.48682 (7)0.0283 (3)
C110.30795 (5)0.11744 (13)0.40603 (7)0.0296 (3)
C120.25612 (5)0.08458 (13)0.33587 (7)0.0306 (3)
C130.23887 (6)0.04876 (14)0.31739 (7)0.0347 (3)
H130.26240.11940.34740.042*
C140.18793 (6)0.08022 (14)0.25584 (8)0.0370 (3)
H140.17580.17120.24420.044*
C150.15531 (6)0.02355 (15)0.21194 (7)0.0378 (3)
C160.17224 (6)0.15721 (15)0.22735 (8)0.0396 (3)
H160.14980.22710.19550.048*
C170.22236 (6)0.18705 (14)0.28987 (7)0.0350 (3)
H170.23390.27830.30160.042*
C180.35302 (6)0.26745 (13)0.50447 (7)0.0321 (3)
C190.41007 (6)0.28720 (13)0.51060 (8)0.0355 (3)
H190.41980.26370.47100.043*
C200.45241 (6)0.34079 (14)0.57415 (8)0.0396 (3)
H200.49100.35580.57750.048*
C210.43962 (7)0.37310 (15)0.63327 (8)0.0414 (3)
H210.46920.40940.67700.050*
C220.38341 (7)0.35180 (15)0.62785 (8)0.0423 (3)
H220.37440.37250.66840.051*
C230.34011 (6)0.30065 (14)0.56397 (8)0.0385 (3)
H230.30140.28800.56050.046*
C240.24275 (8)0.04438 (17)0.59824 (10)0.0523 (4)
H24A0.22290.04830.63130.063*
H24B0.21330.03740.54730.063*
H24C0.26860.03450.61030.063*
C250.47037 (7)0.00787 (16)0.67146 (8)0.0437 (3)
H25A0.44620.04180.62590.052*
H25B0.47610.10080.65760.052*
C260.56208 (7)0.01255 (17)0.77789 (9)0.0462 (4)
H26A0.56790.10750.76730.055*
H26B0.60130.02990.80300.055*
C270.51789 (7)0.19821 (15)0.72649 (9)0.0432 (3)
H27A0.55620.24340.75380.052*
H27B0.49620.24910.68050.052*
H10.4247 (9)0.075 (2)0.3425 (11)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0550 (3)0.0596 (3)0.0526 (3)0.00847 (19)0.0022 (2)0.00729 (19)
O10.0492 (6)0.0401 (5)0.0517 (6)0.0113 (4)0.0378 (5)0.0121 (4)
O20.0642 (7)0.0358 (5)0.0564 (6)0.0060 (5)0.0453 (6)0.0087 (5)
N10.0348 (6)0.0318 (6)0.0381 (6)0.0051 (4)0.0197 (5)0.0033 (5)
N20.0388 (6)0.0394 (6)0.0383 (6)0.0020 (5)0.0233 (5)0.0011 (5)
C10.0299 (6)0.0273 (6)0.0310 (6)0.0027 (5)0.0154 (5)0.0006 (5)
C20.0356 (7)0.0306 (7)0.0353 (7)0.0021 (5)0.0202 (6)0.0017 (5)
C30.0366 (7)0.0392 (8)0.0454 (7)0.0071 (6)0.0265 (6)0.0017 (6)
C40.0375 (7)0.0348 (7)0.0418 (7)0.0120 (6)0.0199 (6)0.0028 (6)
C50.0357 (6)0.0296 (7)0.0317 (6)0.0040 (5)0.0151 (5)0.0002 (5)
C60.0472 (8)0.0288 (7)0.0405 (7)0.0091 (6)0.0204 (6)0.0050 (5)
C70.0549 (8)0.0289 (7)0.0404 (7)0.0031 (6)0.0261 (7)0.0069 (6)
C80.0424 (7)0.0313 (7)0.0370 (7)0.0009 (5)0.0236 (6)0.0002 (5)
C90.0341 (6)0.0284 (6)0.0351 (6)0.0029 (5)0.0187 (5)0.0014 (5)
C100.0295 (6)0.0273 (6)0.0294 (6)0.0003 (5)0.0135 (5)0.0013 (5)
C110.0328 (6)0.0298 (6)0.0348 (6)0.0039 (5)0.0224 (5)0.0066 (5)
C120.0338 (6)0.0321 (7)0.0343 (6)0.0042 (5)0.0225 (5)0.0038 (5)
C130.0362 (7)0.0322 (7)0.0384 (7)0.0052 (5)0.0183 (6)0.0059 (5)
C140.0384 (7)0.0346 (7)0.0414 (7)0.0016 (6)0.0202 (6)0.0007 (6)
C150.0362 (7)0.0478 (8)0.0324 (7)0.0070 (6)0.0173 (6)0.0004 (6)
C160.0454 (8)0.0399 (8)0.0365 (7)0.0133 (6)0.0200 (6)0.0082 (6)
C170.0424 (7)0.0316 (7)0.0370 (7)0.0052 (5)0.0225 (6)0.0043 (5)
C180.0363 (7)0.0267 (6)0.0374 (7)0.0074 (5)0.0193 (5)0.0051 (5)
C190.0397 (7)0.0320 (7)0.0430 (7)0.0040 (5)0.0256 (6)0.0001 (5)
C200.0358 (7)0.0344 (7)0.0519 (8)0.0027 (6)0.0215 (6)0.0014 (6)
C210.0455 (8)0.0357 (7)0.0412 (7)0.0047 (6)0.0160 (6)0.0004 (6)
C220.0547 (9)0.0394 (8)0.0413 (7)0.0054 (6)0.0286 (7)0.0003 (6)
C230.0393 (7)0.0385 (8)0.0463 (8)0.0057 (6)0.0263 (6)0.0024 (6)
C240.0678 (10)0.0459 (9)0.0680 (10)0.0119 (8)0.0528 (9)0.0094 (8)
C250.0489 (8)0.0494 (9)0.0387 (7)0.0110 (7)0.0240 (7)0.0070 (6)
C260.0420 (8)0.0565 (10)0.0474 (8)0.0107 (7)0.0259 (7)0.0084 (7)
C270.0516 (8)0.0380 (8)0.0494 (8)0.0043 (6)0.0305 (7)0.0005 (6)
Geometric parameters (Å, º) top
Cl1—C151.7357 (15)C13—H130.9500
O1—C21.3563 (16)C14—C151.378 (2)
O1—H10.89 (2)C14—H140.9500
O2—C81.3623 (15)C15—C161.387 (2)
O2—C241.4282 (18)C16—C171.384 (2)
N1—C111.2744 (17)C16—H160.9500
N1—C181.4150 (17)C17—H170.9500
N2—C261.4723 (19)C18—C191.3937 (19)
N2—C251.4749 (18)C18—C231.3964 (18)
N2—C271.4762 (19)C19—C201.378 (2)
C1—C21.3828 (17)C19—H190.9500
C1—C101.4241 (17)C20—C211.385 (2)
C1—C111.5012 (17)C20—H200.9500
C2—C31.4119 (19)C21—C221.380 (2)
C3—C41.364 (2)C21—H210.9500
C3—H30.9500C22—C231.382 (2)
C4—C51.4106 (18)C22—H220.9500
C4—H40.9500C23—H230.9500
C5—C61.4159 (19)C24—H24A0.9800
C5—C101.4198 (17)C24—H24B0.9800
C6—C71.360 (2)C24—H24C0.9800
C6—H60.9500C25—C26i1.540 (2)
C7—C81.4154 (19)C25—H25A0.9900
C7—H70.9500C25—H25B0.9900
C8—C91.3706 (18)C26—C25i1.540 (2)
C9—C101.4221 (17)C26—H26A0.9900
C9—H90.9500C26—H26B0.9900
C11—C121.4966 (18)C27—C27i1.545 (3)
C12—C131.3931 (19)C27—H27A0.9900
C12—C171.3949 (18)C27—H27B0.9900
C13—C141.3890 (19)
C2—O1—H1110.6 (13)C16—C15—Cl1119.57 (11)
C8—O2—C24116.85 (10)C17—C16—C15118.87 (13)
C11—N1—C18121.58 (11)C17—C16—H16120.6
C26—N2—C25108.56 (12)C15—C16—H16120.6
C26—N2—C27108.21 (12)C16—C17—C12120.75 (13)
C25—N2—C27108.21 (11)C16—C17—H17119.6
C2—C1—C10120.30 (11)C12—C17—H17119.6
C2—C1—C11119.87 (11)C19—C18—C23118.91 (13)
C10—C1—C11119.62 (10)C19—C18—N1122.47 (11)
O1—C2—C1118.17 (11)C23—C18—N1118.32 (11)
O1—C2—C3121.60 (11)C20—C19—C18120.01 (12)
C1—C2—C3120.22 (12)C20—C19—H19120.0
C4—C3—C2120.00 (12)C18—C19—H19120.0
C4—C3—H3120.0C19—C20—C21121.01 (13)
C2—C3—H3120.0C19—C20—H20119.5
C3—C4—C5121.48 (12)C21—C20—H20119.5
C3—C4—H4119.3C22—C21—C20119.17 (14)
C5—C4—H4119.3C22—C21—H21120.4
C4—C5—C6122.23 (12)C20—C21—H21120.4
C4—C5—C10118.96 (12)C21—C22—C23120.57 (13)
C6—C5—C10118.79 (12)C21—C22—H22119.7
C7—C6—C5121.37 (12)C23—C22—H22119.7
C7—C6—H6119.3C22—C23—C18120.31 (13)
C5—C6—H6119.3C22—C23—H23119.8
C6—C7—C8119.72 (12)C18—C23—H23119.8
C6—C7—H7120.1O2—C24—H24A109.5
C8—C7—H7120.1O2—C24—H24B109.5
O2—C8—C9124.82 (12)H24A—C24—H24B109.5
O2—C8—C7114.39 (11)O2—C24—H24C109.5
C9—C8—C7120.79 (12)H24A—C24—H24C109.5
C8—C9—C10120.14 (12)H24B—C24—H24C109.5
C8—C9—H9119.9N2—C25—C26i110.77 (12)
C10—C9—H9119.9N2—C25—H25A109.5
C5—C10—C9119.01 (11)C26i—C25—H25A109.5
C5—C10—C1118.81 (11)N2—C25—H25B109.5
C9—C10—C1122.18 (11)C26i—C25—H25B109.5
N1—C11—C12117.33 (11)H25A—C25—H25B108.1
N1—C11—C1126.31 (12)N2—C26—C25i110.40 (11)
C12—C11—C1116.14 (11)N2—C26—H26A109.6
C13—C12—C17118.81 (12)C25i—C26—H26A109.6
C13—C12—C11120.47 (11)N2—C26—H26B109.6
C17—C12—C11120.62 (12)C25i—C26—H26B109.6
C14—C13—C12121.12 (13)H26A—C26—H26B108.1
C14—C13—H13119.4N2—C27—C27i110.45 (7)
C12—C13—H13119.4N2—C27—H27A109.6
C15—C14—C13118.53 (13)C27i—C27—H27A109.6
C15—C14—H14120.7N2—C27—H27B109.6
C13—C14—H14120.7C27i—C27—H27B109.6
C14—C15—C16121.86 (13)H27A—C27—H27B108.1
C14—C15—Cl1118.57 (12)
C10—C1—C2—O1179.95 (12)C2—C1—C11—C1281.97 (15)
C11—C1—C2—O15.43 (19)C10—C1—C11—C1292.69 (13)
C10—C1—C2—C30.9 (2)N1—C11—C12—C13147.08 (12)
C11—C1—C2—C3175.50 (12)C1—C11—C12—C1327.86 (16)
O1—C2—C3—C4177.23 (13)N1—C11—C12—C1729.38 (16)
C1—C2—C3—C43.7 (2)C1—C11—C12—C17155.68 (11)
C2—C3—C4—C52.2 (2)C17—C12—C13—C142.25 (18)
C3—C4—C5—C6179.21 (14)C11—C12—C13—C14174.28 (11)
C3—C4—C5—C102.1 (2)C12—C13—C14—C151.67 (19)
C4—C5—C6—C7175.43 (14)C13—C14—C15—C160.5 (2)
C10—C5—C6—C73.2 (2)C13—C14—C15—Cl1179.35 (10)
C5—C6—C7—C80.4 (2)C14—C15—C16—C172.0 (2)
C24—O2—C8—C95.2 (2)Cl1—C15—C16—C17177.82 (10)
C24—O2—C8—C7174.25 (14)C15—C16—C17—C121.4 (2)
C6—C7—C8—O2175.83 (13)C13—C12—C17—C160.67 (18)
C6—C7—C8—C93.7 (2)C11—C12—C17—C16175.85 (11)
O2—C8—C9—C10176.23 (12)C11—N1—C18—C1959.63 (17)
C7—C8—C9—C103.2 (2)C11—N1—C18—C23126.69 (13)
C4—C5—C10—C9175.10 (12)C23—C18—C19—C201.1 (2)
C6—C5—C10—C93.62 (18)N1—C18—C19—C20172.57 (12)
C4—C5—C10—C14.86 (18)C18—C19—C20—C211.4 (2)
C6—C5—C10—C1176.42 (12)C19—C20—C21—C220.4 (2)
C8—C9—C10—C50.45 (19)C20—C21—C22—C230.9 (2)
C8—C9—C10—C1179.60 (12)C21—C22—C23—C181.2 (2)
C2—C1—C10—C53.40 (18)C19—C18—C23—C220.2 (2)
C11—C1—C10—C5171.24 (11)N1—C18—C23—C22174.12 (12)
C2—C1—C10—C9176.56 (12)C26—N2—C25—C26i56.40 (14)
C11—C1—C10—C98.81 (18)C27—N2—C25—C26i60.82 (16)
C18—N1—C11—C12179.94 (11)C25—N2—C26—C25i60.43 (14)
C18—N1—C11—C15.59 (18)C27—N2—C26—C25i56.79 (16)
C2—C1—C11—N1103.62 (15)C26—N2—C27—C27i61.24 (19)
C10—C1—C11—N181.72 (16)C25—N2—C27—C27i56.21 (19)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2ii0.89 (2)1.86 (2)2.7401 (18)167.2 (18)
C20—H20···Cl1iii0.952.783.6071 (17)146
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H18ClNO2·0.5C6H12N2
Mr443.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)25.0027 (5), 9.92298 (18), 20.0052 (4)
β (°) 114.621 (1)
V3)4512.07 (16)
Z8
Radiation typeCu Kα
µ (mm1)1.71
Crystal size (mm)0.60 × 0.50 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.381, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
39753, 4125, 3831
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections4125
No. of parameters295
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.89 (2)1.86 (2)2.7401 (18)167.2 (18)
C20—H20···Cl1ii0.952.783.6071 (17)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds