organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2639-o2640

2-[(E)-4-(Di­ethyl­amino)­styr­yl]-1-methyl­pyridinium iodide

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 6 September 2010; accepted 19 September 2010; online 25 September 2010)

In the title compound, C18H23N2+·I, the cation exists in the E configuration with respect to the ethenyl C=C bond. The pyridinium and benzene rings are nearly coplanar, making a dihedral angle of 4.63 (7)°. The two ethyl groups of the diethyl­amino substituent point in opposite directions with respect to the benzene plane. In the crystal, the cation and the iodide anion are linked by a weak C—H⋯I inter­action. The cations are stacked in an anti-parallel manner along the a axis by a ππ inter­action with a centroid–centroid distance of 3.5262 (9) Å. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background to styryl pyridinium quaternary ammonium compounds, see: Browning et al. (1922[Browning, C. H., Cohen, J. B. & Gulbransen, R. (1922). Br. Med. J. 1, 514-515.], 1923[Browning, C. H., Cohen, J. B., Ellingworth, S. & Gulbransen, R. (1923). Br. Med. J. 25, 326.]); Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Wainwright & Kristiansen (2003[Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479-486.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934-o1935.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2+·I

  • Mr = 394.28

  • Monoclinic, P 21 /c

  • a = 7.7099 (1) Å

  • b = 20.2780 (4) Å

  • c = 10.9375 (2) Å

  • β = 92.527 (1)°

  • V = 1708.32 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 100 K

  • 0.34 × 0.30 × 0.21 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.570, Tmax = 0.691

  • 23707 measured reflections

  • 6198 independent reflections

  • 5765 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.070

  • S = 1.10

  • 6198 reflections

  • 282 parameters

  • All H-atom parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1i 0.91 (3) 2.99 (3) 3.7980 (18) 148.8 (19)
C18—H18BCg2ii 0.94 (3) 2.79 (3) 3.6270 (17) 149 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For a long time, styryl pyridinium quaternary ammonium compounds were known to exhibit antiseptic properties (Browning et al., 1922, 1923). However medicinal researchers have long neglected to further develop the styryl pyridinium chromophore compounds for use as antibacterial agents due to the superior properties of penicillin until the incoming of the penicillin-resistant bacteria phenomenon, for example, methicillin-resistant Staphylococcus aureus, MRSA. The most interesting feature of styryl pyridinium quaternary ammonium compounds is their very specific activity to MRSA which is a vital drug-resistant bacteria (Wainwright & Kristiansen, 2003; Chanawanno et al., 2010). From this significant reason, our research group has synthesized and characterized several styryl pyridinium derivatives including the title compound (I) in order to search for new potent antibacterial agents. Herein we report the crystal structure of (I).

Figure 1 shows the asymmetric unit of (I), which consists of a C18H23N2+ cation and an I- anion. The cation exists in the E configuration with respect to the C6C7 double bond [1.350 (2) Å] with the torsion angle C5–C6–C7–C8 = -179.29 (16)°. The pyridinium and benzene rings are nearly coplanar with the ethenyl bridge with the dihedral angle between the pyridinium and benzene rings being 4.63 (7)°. The two ethyl groups of the diethylamino substituent pointed towards the opposite directions with respect to the plane of benzene ring. The conformation of the diethylamino can be indicated by the torsion angles C11–N2–C14–C15 = 84.7 (2)° and C11–N2–C16–C17 = 79.0 (2)°. The bond lengths of cation in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Chanawanno et al., 2008; Fun et al., 2009).

In the crystal packing (Fig. 2), the cations are arranged in a zig-zag manner along the b axis with the iodide ions located in the interstitials of the cations and linked to the cations by a C—H···I weak interaction (Table 1). The cations stacked approximately along the a axis in an antiparallel manner by ππ interaction with the Cg1···Cg2iii distance of 3.5262 (9) Å [symmetry code: (iii) 1-x, 1-y, 1-z]; Cg1 and Cg2 are centroids of N1/C1–C5 and C8–C13 rings, respectively. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For background to styryl pyridinium quaternary ammonium compounds, see: Browning et al. (1922, 1923); Chanawanno et al. (2010); Wainwright & Kristiansen (2003). For related structures, see: Chanawanno et al. (2008); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) was prepared by mixing 1:1:1 molar ratio solutions of 1,2-dimethylpyridinium iodide (2 g, 8.5 mmol), 4-diethylaminobenzaldehyde (1.52 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 6 hours under a nitrogen atmosphere. The orange solid which formed was filtered and washed with diethylether. Orange block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 527-529 K).

Refinement top

All H atoms were located in a difference map and refined isotropically. The highest residual electron density peak is located at 1.57 Å from I1 and the deepest hole is located at 0.48 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Weak C—H···I interactions are shown as dashed lines.
2-[(E)-4-(Diethylamino)styryl]-1-methylpyridinium iodide top
Crystal data top
C18H23N2+·IF(000) = 792
Mr = 394.28Dx = 1.533 Mg m3
Monoclinic, P21/cMelting point = 527–529 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7099 (1) ÅCell parameters from 6198 reflections
b = 20.2780 (4) Åθ = 2.0–32.6°
c = 10.9375 (2) ŵ = 1.87 mm1
β = 92.527 (1)°T = 100 K
V = 1708.32 (5) Å3Block, orange
Z = 40.34 × 0.30 × 0.21 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
6198 independent reflections
Radiation source: sealed tube5765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 811
Tmin = 0.570, Tmax = 0.691k = 2930
23707 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.8072P]
where P = (Fo2 + 2Fc2)/3
6198 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C18H23N2+·IV = 1708.32 (5) Å3
Mr = 394.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7099 (1) ŵ = 1.87 mm1
b = 20.2780 (4) ÅT = 100 K
c = 10.9375 (2) Å0.34 × 0.30 × 0.21 mm
β = 92.527 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
6198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5765 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.691Rint = 0.026
23707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.070All H-atom parameters refined
S = 1.10Δρmax = 0.51 e Å3
6198 reflectionsΔρmin = 0.63 e Å3
282 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.385998 (14)0.649927 (5)0.254076 (9)0.01744 (4)
N10.27082 (18)0.63425 (7)0.69740 (12)0.0128 (2)
N20.1456 (2)0.33502 (7)0.09996 (13)0.0165 (3)
C10.3117 (2)0.66702 (9)0.80338 (15)0.0156 (3)
C20.3971 (2)0.63637 (9)0.89989 (15)0.0169 (3)
C30.4439 (2)0.57021 (9)0.88598 (15)0.0181 (3)
C40.4023 (2)0.53711 (8)0.77893 (15)0.0159 (3)
C50.3120 (2)0.56923 (8)0.68124 (14)0.0130 (3)
C60.2616 (2)0.53758 (8)0.56679 (15)0.0149 (3)
C70.3027 (2)0.47469 (8)0.53980 (14)0.0141 (3)
C80.2575 (2)0.44086 (8)0.42673 (14)0.0136 (3)
C90.1595 (2)0.46906 (8)0.32844 (15)0.0144 (3)
C100.1223 (2)0.43480 (8)0.22166 (15)0.0150 (3)
C110.1815 (2)0.36902 (8)0.20590 (14)0.0135 (3)
C120.2802 (2)0.34044 (8)0.30475 (15)0.0131 (3)
C130.3169 (2)0.37578 (8)0.41093 (14)0.0133 (3)
C140.0388 (2)0.36290 (9)0.00116 (15)0.0173 (3)
C150.1390 (3)0.40606 (10)0.08716 (17)0.0216 (3)
C160.2067 (2)0.26717 (8)0.08518 (15)0.0164 (3)
C170.0948 (3)0.21691 (9)0.14881 (17)0.0201 (3)
C180.1817 (2)0.67224 (9)0.59821 (16)0.0182 (3)
H1A0.285 (3)0.7107 (13)0.805 (2)0.020 (6)*
H2A0.426 (4)0.6591 (13)0.971 (3)0.029 (7)*
H3A0.512 (4)0.5499 (14)0.954 (3)0.031 (7)*
H4A0.434 (3)0.4942 (13)0.774 (2)0.019 (6)*
H6A0.198 (3)0.5628 (12)0.507 (2)0.014 (5)*
H7A0.369 (3)0.4489 (13)0.598 (2)0.020 (6)*
H9A0.120 (3)0.5160 (13)0.332 (2)0.021 (6)*
H10A0.055 (4)0.4541 (14)0.158 (3)0.027 (7)*
H12A0.325 (3)0.2966 (13)0.298 (2)0.020 (6)*
H14A0.057 (3)0.3869 (13)0.030 (2)0.017 (6)*
H13A0.384 (3)0.3571 (11)0.476 (2)0.015 (6)*
H14B0.013 (3)0.3265 (13)0.047 (2)0.021 (6)*
H15A0.061 (4)0.4195 (15)0.156 (3)0.037 (8)*
H15B0.238 (4)0.3824 (14)0.117 (2)0.026 (7)*
H15C0.180 (4)0.4425 (15)0.047 (3)0.028 (7)*
H16A0.323 (3)0.2637 (13)0.115 (2)0.022 (6)*
H16B0.202 (3)0.2567 (13)0.002 (2)0.020 (6)*
H17A0.139 (4)0.1730 (15)0.135 (3)0.029 (7)*
H17B0.098 (3)0.2228 (14)0.236 (2)0.021 (6)*
H17C0.022 (4)0.2207 (14)0.121 (2)0.027 (7)*
H18A0.176 (4)0.7175 (14)0.623 (2)0.027 (7)*
H18B0.069 (4)0.6552 (14)0.586 (3)0.032 (8)*
H18C0.244 (4)0.6682 (14)0.525 (3)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02091 (6)0.01714 (6)0.01425 (6)0.00473 (4)0.00049 (4)0.00028 (3)
N10.0135 (6)0.0121 (6)0.0130 (5)0.0000 (4)0.0022 (4)0.0001 (4)
N20.0239 (7)0.0128 (6)0.0126 (6)0.0009 (5)0.0015 (5)0.0015 (5)
C10.0179 (7)0.0143 (7)0.0147 (6)0.0003 (5)0.0036 (5)0.0022 (5)
C20.0183 (7)0.0200 (7)0.0126 (6)0.0052 (6)0.0026 (5)0.0017 (5)
C30.0205 (7)0.0187 (7)0.0149 (6)0.0030 (6)0.0018 (5)0.0035 (6)
C40.0196 (7)0.0125 (7)0.0154 (6)0.0013 (5)0.0016 (5)0.0020 (5)
C50.0121 (6)0.0129 (6)0.0140 (6)0.0011 (5)0.0019 (5)0.0003 (5)
C60.0161 (7)0.0143 (7)0.0142 (6)0.0000 (5)0.0013 (5)0.0013 (5)
C70.0142 (6)0.0140 (7)0.0141 (6)0.0010 (5)0.0006 (5)0.0007 (5)
C80.0144 (6)0.0128 (6)0.0136 (6)0.0001 (5)0.0013 (5)0.0011 (5)
C90.0143 (6)0.0128 (6)0.0160 (6)0.0015 (5)0.0014 (5)0.0003 (5)
C100.0168 (7)0.0137 (7)0.0146 (6)0.0021 (5)0.0005 (5)0.0014 (5)
C110.0150 (6)0.0128 (6)0.0127 (6)0.0012 (5)0.0011 (5)0.0010 (5)
C120.0134 (6)0.0122 (6)0.0140 (6)0.0014 (5)0.0016 (5)0.0012 (5)
C130.0136 (6)0.0126 (6)0.0138 (6)0.0009 (5)0.0011 (5)0.0003 (5)
C140.0184 (7)0.0195 (7)0.0137 (6)0.0006 (6)0.0029 (5)0.0005 (6)
C150.0229 (8)0.0255 (9)0.0166 (7)0.0000 (7)0.0018 (6)0.0029 (6)
C160.0208 (7)0.0134 (7)0.0150 (6)0.0005 (6)0.0019 (5)0.0033 (5)
C170.0229 (8)0.0172 (8)0.0205 (7)0.0029 (6)0.0025 (6)0.0042 (6)
C180.0213 (8)0.0171 (7)0.0161 (7)0.0037 (6)0.0008 (6)0.0014 (6)
Geometric parameters (Å, º) top
N1—C11.361 (2)C9—H9A1.00 (3)
N1—C51.369 (2)C10—C111.423 (2)
N1—C181.475 (2)C10—H10A0.93 (3)
N2—C111.366 (2)C11—C121.418 (2)
N2—C141.463 (2)C12—C131.383 (2)
N2—C161.466 (2)C12—H12A0.96 (3)
C1—C21.368 (2)C13—H13A0.94 (2)
C1—H1A0.91 (3)C14—C151.521 (3)
C2—C31.399 (3)C14—H14A0.96 (3)
C2—H2A0.92 (3)C14—H14B0.97 (3)
C3—C41.375 (2)C15—H15A0.99 (3)
C3—H3A0.98 (3)C15—H15B0.97 (3)
C4—C51.409 (2)C15—H15C0.91 (3)
C4—H4A0.91 (3)C16—C171.523 (3)
C5—C61.445 (2)C16—H16A0.94 (3)
C6—C71.350 (2)C16—H16B0.94 (2)
C6—H6A0.95 (2)C17—H17A0.97 (3)
C7—C81.443 (2)C17—H17B0.96 (2)
C7—H7A0.95 (3)C17—H17C0.94 (3)
C8—C91.408 (2)C18—H18A0.96 (3)
C8—C131.410 (2)C18—H18B0.94 (3)
C9—C101.378 (2)C18—H18C0.95 (3)
C1—N1—C5122.25 (14)C12—C11—C10117.06 (14)
C1—N1—C18117.02 (14)C13—C12—C11120.75 (15)
C5—N1—C18120.72 (14)C13—C12—H12A119.0 (15)
C11—N2—C14122.16 (15)C11—C12—H12A120.2 (15)
C11—N2—C16120.88 (14)C12—C13—C8122.16 (14)
C14—N2—C16116.90 (13)C12—C13—H13A120.7 (15)
N1—C1—C2121.39 (16)C8—C13—H13A117.1 (15)
N1—C1—H1A116.3 (16)N2—C14—C15113.93 (15)
C2—C1—H1A122.2 (16)N2—C14—H14A110.1 (15)
C1—C2—C3117.98 (15)C15—C14—H14A110.4 (15)
C1—C2—H2A120.7 (18)N2—C14—H14B107.8 (16)
C3—C2—H2A121.3 (18)C15—C14—H14B109.0 (16)
C4—C3—C2120.60 (15)H14A—C14—H14B105 (2)
C4—C3—H3A122.5 (17)C14—C15—H15A108.9 (18)
C2—C3—H3A116.9 (17)C14—C15—H15B110.5 (17)
C3—C4—C5120.59 (16)H15A—C15—H15B110 (2)
C3—C4—H4A118.0 (16)C14—C15—H15C110.0 (18)
C5—C4—H4A121.4 (16)H15A—C15—H15C109 (2)
N1—C5—C4117.18 (14)H15B—C15—H15C108 (2)
N1—C5—C6118.99 (14)N2—C16—C17112.73 (15)
C4—C5—C6123.83 (15)N2—C16—H16A109.7 (16)
C7—C6—C5123.55 (15)C17—C16—H16A109.9 (16)
C7—C6—H6A118.6 (15)N2—C16—H16B108.7 (16)
C5—C6—H6A117.8 (15)C17—C16—H16B107.1 (16)
C6—C7—C8125.91 (15)H16A—C16—H16B109 (2)
C6—C7—H7A119.8 (15)C16—C17—H17A109.6 (17)
C8—C7—H7A114.3 (15)C16—C17—H17B112.3 (16)
C9—C8—C13116.92 (14)H17A—C17—H17B106 (2)
C9—C8—C7124.21 (15)C16—C17—H17C110.5 (17)
C13—C8—C7118.86 (14)H17A—C17—H17C111 (2)
C10—C9—C8121.80 (15)H17B—C17—H17C107 (2)
C10—C9—H9A117.3 (14)N1—C18—H18A108.7 (16)
C8—C9—H9A120.8 (14)N1—C18—H18B107.8 (18)
C9—C10—C11121.30 (15)H18A—C18—H18B110 (2)
C9—C10—H10A120.4 (17)N1—C18—H18C109.5 (17)
C11—C10—H10A118.3 (17)H18A—C18—H18C110 (2)
N2—C11—C12121.47 (15)H18B—C18—H18C111 (3)
N2—C11—C10121.47 (15)
C5—N1—C1—C20.1 (2)C7—C8—C9—C10179.02 (16)
C18—N1—C1—C2178.88 (16)C8—C9—C10—C110.0 (3)
N1—C1—C2—C31.0 (3)C14—N2—C11—C12177.77 (15)
C1—C2—C3—C41.1 (3)C16—N2—C11—C120.6 (2)
C2—C3—C4—C50.1 (3)C14—N2—C11—C102.6 (3)
C1—N1—C5—C41.1 (2)C16—N2—C11—C10179.73 (15)
C18—N1—C5—C4177.87 (15)C9—C10—C11—N2179.66 (16)
C1—N1—C5—C6178.99 (15)C9—C10—C11—C120.0 (2)
C18—N1—C5—C62.1 (2)N2—C11—C12—C13179.33 (15)
C3—C4—C5—N11.0 (2)C10—C11—C12—C130.3 (2)
C3—C4—C5—C6179.10 (16)C11—C12—C13—C80.6 (2)
N1—C5—C6—C7176.94 (16)C9—C8—C13—C120.6 (2)
C4—C5—C6—C73.0 (3)C7—C8—C13—C12179.43 (15)
C5—C6—C7—C8179.29 (16)C11—N2—C14—C1584.7 (2)
C6—C7—C8—C91.4 (3)C16—N2—C14—C1598.03 (19)
C6—C7—C8—C13177.33 (16)C11—N2—C16—C1779.0 (2)
C13—C8—C9—C100.3 (2)C14—N2—C16—C1798.24 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.91 (3)2.99 (3)3.7980 (18)148.8 (19)
C18—H18B···Cg2ii0.94 (3)2.79 (3)3.6270 (17)149 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H23N2+·I
Mr394.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7099 (1), 20.2780 (4), 10.9375 (2)
β (°) 92.527 (1)
V3)1708.32 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.34 × 0.30 × 0.21
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.570, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
23707, 6198, 5765
Rint0.026
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.070, 1.10
No. of reflections6198
No. of parameters282
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.63

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.91 (3)2.99 (3)3.7980 (18)148.8 (19)
C18—H18B···Cg2ii0.94 (3)2.79 (3)3.6270 (17)149 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, email: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrowning, C. H., Cohen, J. B., Ellingworth, S. & Gulbransen, R. (1923). Br. Med. J. 25, 326.  CrossRef Google Scholar
First citationBrowning, C. H., Cohen, J. B. & Gulbransen, R. (1922). Br. Med. J. 1, 514–515.  CrossRef CAS PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934–o1935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479–486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2639-o2640
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds