organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2S,6S,9S)-6-Methyl-5-oxobi­cyclo­[4.4.0]decane-2,9-diyl di­acetate

aTallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
*Correspondence e-mail: fwerner@chemnet.ee

(Received 9 September 2010; accepted 13 September 2010; online 18 September 2010)

The chiral title compound, C15H22O5, is an inter­mediate in the total synthesis of biologically active 9,11-secosterols. In the crystal, the cyclo­hexane rings are trans-fused and both adopt chair conformations. In the crystal, mol­ecules are loosely held together in a layer parallel to (100) by weak inter­molcular C—H⋯O hydrogen bonds accepted by carbonyl O atoms of the acetyl groups.

Related literature

For background to the biological activity of 9,11-secosterols and the synthesis of the title compound, see: Aav et al. (2000[Aav, R., Kanger, T., Pehk, T. & Lopp, M. (2000). Synlett, 4, 529-531.]). For a related structure, see: Foot et al. (2006[Foot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett. 47, 6817-6820.]). For hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O5

  • Mr = 282.33

  • Monoclinic, C 2

  • a = 22.885 (5) Å

  • b = 9.340 (2) Å

  • c = 7.2250 (13) Å

  • β = 101.280 (6)°

  • V = 1514.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 300 K

  • 0.50 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.985

  • 4796 measured reflections

  • 1413 independent reflections

  • 1226 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.05

  • 1413 reflections

  • 185 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.97 2.62 3.551 (4) 161
C13—H13C⋯O3ii 0.96 2.63 3.533 (4) 156
C8—H8A⋯O5iii 0.97 2.44 3.309 (4) 149
C11—H11A⋯O5iii 0.96 2.70 3.662 (4) 178
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (iii) x, y+1, z.

Data collection: GIS (Bruker, 2010[Bruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2010[Bruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

At 300 K the enantiopure compound (1S,2S,6S,9S)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,9-diyl diacetate, (I), crystallizes in the chirodescriptive monoclinic space group C2 (No. 5) with one molecule in the asymmetric unit. Bond lengths and bond angles in the molecule are normal. The trans-fused cyclohexane rings both adopt chair conformation. The acetyl groups are inclined to the least-squares plane, defined by the carbon atoms of the cyclohexane rings, by ~46.4 (O2O3C12C13) and ~51.2° (O4O5C14C15), respectively (Fig. 1). The molecules are loosely hold together in layers parallel to the A-plane with a repeating distance of d100/2~11.2 Å, within which weak intra- and intermolecular hydrogen bonds (Steiner, 2002) occur (Fig, 2, Table 1). Between the layers only hydrophobic interactions are present.

Related literature top

For background [to what?] and the synthesis of the title compound, see: Aav et al. (2000). For a related structure, see: Foot et al. (2006). For hydrogen bonding, see: Steiner (2002).

Experimental top

Enantiopure (I) was synthesized according to Aav et al. (2000). Single crystals were grown by slow evaporation of a solution of (I) in acetone/petrol ether.

Refinement top

Owing to absence of significant anomalous scattering, Friedel pairs were merged and all f'' values were set to zero for the final refinement. The absolute structure was assigned from the synthetic procedure. Hydrogen atoms were included at calculated positions [d(C—H) = 0.96 (CH3), 0.97 (CH2) or 0.98 Å (CH)] and treated as riding on their base atoms, with Uiso(H) = 1.2Ueq(C) (CH2 and CH) or 1.5Ueq(C) (CH3).

Computing details top

Data collection: GIS (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010) and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Asymmetric unit in the crystal structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Cyan dashed lines indicate weak hydrogen bonds. [Symmetry codes: (i) x, y, 1 + z; (ii) x, 1 + y, z; (iii) 1/2 - x, 1/2 + y, -z; (iv) x, y, -1 + z; (v) 1/2 - x, -1/2 + y, -z; (vi) x, -1 + y, z.]
[Figure 2] Fig. 2. Packing diagram of (I). Red planes indicate the boundaries of the layers within which weak hydrogen bonds occur. The unit cell is outlined.
(1S,2S,6S,9S)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,9-diyl diacetate top
Crystal data top
C15H22O5F(000) = 608
Mr = 282.33Dx = 1.238 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2044 reflections
a = 22.885 (5) Åθ = 2.4–23.9°
b = 9.340 (2) ŵ = 0.09 mm1
c = 7.2250 (13) ÅT = 300 K
β = 101.280 (6)°Needle, colorless
V = 1514.5 (5) Å30.50 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART X2S benchtop
diffractometer
1413 independent reflections
Radiation source: XOS X-beam microfocus source1226 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.041
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 2727
Tmin = 0.955, Tmax = 0.985k = 1111
4796 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0812P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1413 reflectionsΔρmax = 0.15 e Å3
185 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C15H22O5V = 1514.5 (5) Å3
Mr = 282.33Z = 4
Monoclinic, C2Mo Kα radiation
a = 22.885 (5) ŵ = 0.09 mm1
b = 9.340 (2) ÅT = 300 K
c = 7.2250 (13) Å0.50 × 0.20 × 0.16 mm
β = 101.280 (6)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
1413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
1226 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.985Rint = 0.041
4796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
1413 reflectionsΔρmin = 0.14 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41782 (12)0.1268 (3)0.8403 (4)0.0548 (7)
H1A0.45050.14290.94600.066*
H1B0.38540.08370.88910.066*
C20.43814 (13)0.0228 (3)0.7031 (5)0.0603 (8)
H2A0.47350.06030.66490.072*
H2B0.44840.06830.76560.072*
C30.38967 (12)0.0004 (3)0.5307 (4)0.0507 (7)
H30.35590.04840.56830.061*
C40.36824 (12)0.1415 (3)0.4352 (4)0.0481 (6)
H4B0.33590.12370.32920.058*
H4A0.40050.18680.38780.058*
C50.34678 (11)0.2411 (2)0.5769 (4)0.0417 (6)
H50.31540.18950.62410.050*
C60.31877 (12)0.3794 (3)0.4877 (4)0.0460 (6)
H60.34850.43720.44050.055*
C70.29180 (14)0.4638 (3)0.6307 (4)0.0619 (8)
H7B0.25900.40990.66300.074*
H7A0.27610.55360.57450.074*
C80.33767 (15)0.4945 (3)0.8099 (4)0.0625 (8)
H8A0.36530.56650.78220.075*
H8B0.31740.53380.90440.075*
C90.37226 (13)0.3646 (3)0.8900 (4)0.0559 (7)
O10.38133 (13)0.3386 (3)1.0571 (3)0.0894 (8)
C100.39716 (11)0.2710 (3)0.7505 (4)0.0458 (6)
C110.45030 (12)0.3532 (4)0.6993 (4)0.0619 (7)
H11A0.43770.44770.65680.093*
H11B0.46450.30330.60060.093*
H11C0.48170.35980.80850.093*
O20.27152 (7)0.33569 (19)0.3333 (2)0.0510 (5)
C120.25230 (13)0.4324 (3)0.1969 (4)0.0523 (7)
O30.26894 (10)0.5536 (2)0.2034 (3)0.0678 (6)
C130.20704 (15)0.3674 (4)0.0446 (4)0.0689 (9)
H13A0.19060.44000.04460.103*
H13B0.17580.32570.09820.103*
H13C0.22540.29450.01830.103*
O40.41045 (9)0.08472 (18)0.3880 (3)0.0610 (6)
C140.41311 (14)0.2269 (3)0.4139 (5)0.0673 (9)
O50.40094 (15)0.2845 (3)0.5499 (5)0.1017 (10)
C150.43333 (19)0.3023 (4)0.2556 (6)0.0896 (12)
H15A0.47490.32500.29200.134*
H15B0.42720.24140.14640.134*
H15C0.41090.38890.22630.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (15)0.0635 (17)0.0480 (15)0.0007 (12)0.0035 (12)0.0094 (13)
C20.0505 (16)0.0594 (17)0.0648 (19)0.0099 (13)0.0041 (14)0.0092 (14)
C30.0501 (15)0.0431 (12)0.0586 (17)0.0034 (11)0.0097 (13)0.0039 (13)
C40.0499 (15)0.0457 (13)0.0460 (15)0.0032 (11)0.0029 (12)0.0039 (11)
C50.0389 (12)0.0430 (12)0.0428 (14)0.0014 (10)0.0071 (11)0.0087 (11)
C60.0471 (13)0.0471 (13)0.0435 (14)0.0033 (10)0.0081 (12)0.0023 (11)
C70.0649 (18)0.0655 (18)0.0561 (17)0.0190 (14)0.0137 (16)0.0037 (15)
C80.080 (2)0.0593 (16)0.0500 (16)0.0057 (15)0.0167 (16)0.0031 (14)
C90.0597 (16)0.0617 (17)0.0464 (16)0.0076 (13)0.0107 (13)0.0014 (13)
O10.128 (2)0.0996 (19)0.0414 (12)0.0212 (18)0.0181 (13)0.0080 (13)
C100.0410 (13)0.0527 (14)0.0430 (14)0.0023 (11)0.0067 (11)0.0048 (11)
C110.0475 (14)0.0716 (18)0.0660 (18)0.0132 (14)0.0093 (13)0.0024 (16)
O20.0517 (10)0.0500 (10)0.0470 (10)0.0037 (8)0.0007 (8)0.0103 (9)
C120.0601 (16)0.0520 (15)0.0464 (16)0.0186 (13)0.0140 (14)0.0063 (13)
O30.0948 (17)0.0498 (11)0.0581 (13)0.0096 (11)0.0132 (11)0.0094 (10)
C130.079 (2)0.0689 (19)0.0520 (17)0.0173 (16)0.0041 (15)0.0027 (15)
O40.0668 (13)0.0433 (10)0.0724 (15)0.0070 (8)0.0127 (11)0.0004 (9)
C140.0613 (18)0.0466 (16)0.085 (3)0.0011 (13)0.0078 (17)0.0000 (16)
O50.138 (3)0.0503 (12)0.117 (2)0.0015 (14)0.024 (2)0.0167 (14)
C150.093 (3)0.0586 (18)0.106 (3)0.0127 (18)0.007 (2)0.0224 (19)
Geometric parameters (Å, º) top
C1—C21.524 (4)C8—H8A0.9700
C1—C101.528 (4)C8—H8B0.9700
C1—H1A0.9700C9—O11.209 (3)
C1—H1B0.9700C9—C101.526 (4)
C2—C31.512 (4)C10—C111.543 (4)
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—O41.453 (3)C11—H11C0.9600
C3—C41.523 (4)O2—C121.346 (3)
C3—H30.9800C12—O31.193 (4)
C4—C51.533 (3)C12—O31.193 (4)
C4—H4B0.9700C12—C131.485 (4)
C4—H4A0.9700C13—H13A0.9600
C5—C61.527 (3)C13—H13B0.9600
C5—C101.554 (3)C13—H13C0.9600
C5—H50.9800O4—C141.340 (4)
C6—O21.452 (3)C14—O51.200 (4)
C6—C71.523 (4)C14—O51.200 (4)
C6—H60.9800C14—C151.492 (5)
C7—C81.526 (4)C15—H15A0.9600
C7—H7B0.9700C15—H15B0.9600
C7—H7A0.9700C15—H15C0.9600
C8—C91.502 (4)
C2—C1—C10113.2 (2)C7—C8—H8A108.9
C2—C1—H1A108.9C9—C8—H8B108.9
C10—C1—H1A108.9C7—C8—H8B108.9
C2—C1—H1B108.9H8A—C8—H8B107.7
C10—C1—H1B108.9O1—C9—C8121.5 (3)
H1A—C1—H1B107.8O1—C9—C10122.1 (3)
C3—C2—C1110.9 (2)C8—C9—C10116.4 (2)
C3—C2—H2A109.5C9—C10—C1110.4 (2)
C1—C2—H2A109.5C9—C10—C11106.7 (2)
C3—C2—H2B109.5C1—C10—C11110.3 (2)
C1—C2—H2B109.5C9—C10—C5108.8 (2)
H2A—C2—H2B108.1C1—C10—C5107.7 (2)
O4—C3—C2111.8 (2)C11—C10—C5113.0 (2)
O4—C3—C4105.9 (2)C10—C11—H11A109.5
C2—C3—C4111.9 (2)C10—C11—H11B109.5
O4—C3—H3109.1H11A—C11—H11B109.5
C2—C3—H3109.1C10—C11—H11C109.5
C4—C3—H3109.1H11A—C11—H11C109.5
C3—C4—C5109.8 (2)H11B—C11—H11C109.5
C3—C4—H4B109.7C12—O2—C6117.5 (2)
C5—C4—H4B109.7O3—C12—O2123.5 (3)
C3—C4—H4A109.7O3—C12—O2123.5 (3)
C5—C4—H4A109.7O3—C12—C13126.0 (3)
H4B—C4—H4A108.2O3—C12—C13126.0 (3)
C6—C5—C4113.18 (19)O2—C12—C13110.4 (3)
C6—C5—C10111.9 (2)C12—C13—H13A109.5
C4—C5—C10111.34 (19)C12—C13—H13B109.5
C6—C5—H5106.7H13A—C13—H13B109.5
C4—C5—H5106.7C12—C13—H13C109.5
C10—C5—H5106.7H13A—C13—H13C109.5
O2—C6—C7109.1 (2)H13B—C13—H13C109.5
O2—C6—C5105.94 (19)C14—O4—C3117.1 (3)
C7—C6—C5110.1 (2)O5—C14—O4123.2 (3)
O2—C6—H6110.5O5—C14—O4123.2 (3)
C7—C6—H6110.5O5—C14—C15124.9 (3)
C5—C6—H6110.5O5—C14—C15124.9 (3)
C6—C7—C8111.7 (2)O4—C14—C15111.9 (3)
C6—C7—H7B109.3C14—C15—H15A109.5
C8—C7—H7B109.3C14—C15—H15B109.5
C6—C7—H7A109.3H15A—C15—H15B109.5
C8—C7—H7A109.3C14—C15—H15C109.5
H7B—C7—H7A107.9H15A—C15—H15C109.5
C9—C8—C7113.5 (3)H15B—C15—H15C109.5
C9—C8—H8A108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.653.143 (4)112
C8—H8B···O3i0.972.623.551 (4)161
C13—H13C···O3ii0.962.633.533 (4)156
C2—H2B···O50.972.653.134 (4)111
C8—H8A···O5iii0.972.443.309 (4)149
C11—H11A···O5iii0.962.703.662 (4)178
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H22O5
Mr282.33
Crystal system, space groupMonoclinic, C2
Temperature (K)300
a, b, c (Å)22.885 (5), 9.340 (2), 7.2250 (13)
β (°) 101.280 (6)
V3)1514.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART X2S benchtop
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.955, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4796, 1413, 1226
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.05
No. of reflections1413
No. of parameters185
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: GIS (Bruker, 2010), APEX2 (Bruker, 2010) and SAINT (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.653.143 (4)111.6
C8—H8B···O3i0.972.623.551 (4)160.9
C13—H13C···O3ii0.962.633.533 (4)156.3
C2—H2B···O50.972.653.134 (4)111.2
C8—H8A···O5iii0.972.443.309 (4)148.9
C11—H11A···O5iii0.962.703.662 (4)177.8
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful for funding through grant agreement No. 229830 IC–UP2 under the 7th Framework Programme of the European Commission.

References

First citationAav, R., Kanger, T., Pehk, T. & Lopp, M. (2000). Synlett, 4, 529–531.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett. 47, 6817–6820.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds