organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Hy­dr­oxy-7-meth­­oxy­naphthalen-1-yl)(phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 25 September 2010; accepted 27 September 2010; online 30 September 2010)

In the mol­ecule of the title compound, C18H14O3, there is an intra­molecular O—H⋯O=C hydrogen bond between the carbonyl and hy­droxy groups on the naphthalene ring system. The angles between the C=O bond vector and the least-squares planes of the naphthalene ring system and the phenyl ring are 30.58 (6) and 42.82 (7)°, respectively, while the dihedral angle between the naphthalene ring system and the phenyl ring is 58.65 (5)°. In the crystal, mol­ecules are connected by pairs of inter­molecular O—H⋯O=C hydrogen bonds, forming centrosymmetric dimers.

Related literature

For closely related structures, see: Hijikata et al. (2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Mitsui et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Mitsui, Nakaema, Noguchi & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O3

  • Mr = 278.29

  • Monoclinic, P 21 /c

  • a = 9.81012 (18) Å

  • b = 6.27891 (11) Å

  • c = 22.0737 (4) Å

  • β = 93.167 (1)°

  • V = 1357.59 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.586, Tmax = 0.754

  • 20565 measured reflections

  • 2496 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.08

  • 2496 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.92 (2) 1.77 (2) 2.5792 (14) 145 (2)
O1—H1⋯O3i 0.92 (2) 2.32 (2) 3.0088 (16) 132.4 (18)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported the crystal structures of several 1-aroylated 2,7-dimethoxynaphthalene homologues exemplified by 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010) and 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008). Methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010). Furthermore, we also reported the crystal structure of 1-monoaroylnaphthalene derivatives having 2-oxy group exemplified by (4-chlorobenzoyl)(2-hydroxy-7-methoxynaphthalene-1-yl)metanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) and (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the crystal structure of 1-benzoyl-2-hydroxy-7-methoxynaphthalene (I). The title compound was prepared by chemoselective demethylation of 1-benzoyl-2,7-dimethoxynaphthalene with aluminium trichloride.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the intramolecular O—H···OC hydrogen bond that forms a six-membered ring including carbonyl and hydroxy groups on the naphthalene ring is observed [O3···H1 = 1.77 (2) Å]. The conformation of these groups resembles to that of (4-chlorobenzoyl)(2-hydroxy-7-methoxynaphthalen-1-yl)metanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). The angles of CO bond vector against the least-squares plane of the naphthalene ring (C1–C10) and benzene ring (C12–C17) are 30.58 (6) and 42.82 (7)°, respectively. The dihedral angle between the naphthalene ring (C1–C10) and benzene ring (C12–C17) is 58.65 (5)°.

In the crystal structure, the molecular packing of (I) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction. Two adjacent naphthalene rings are exactly parallel and the intermolecular O—H···OC hydrogen bond between the hydroxy group and the carbonyl oxygen on the naphthalene ring (Fig. 2) along the c axis, is observed [O3···H1 = 2.32 (2) Å]. The oxygen atom in the methoxy group interacts with carbon atom in the methoxy group of the next molecule, i.e. two methoxy groups in the adjacent molecules interact with each other [O2···C18 = 3.060 (2) Å] along the a axis. The naphthalene rings interact with the carbonyl groups [C4···O3 = 3.036 (18) Å] along the b axis. The benzoyl groups interact with the methyl groups (C16···H18A = 2.88 Å) along the a axis.

Related literature top

For closely related structures, see: Hijikata et al. (2010); Kato et al. (2010); Mitsui et al. (2009); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008).

Experimental top

To a solution of 1-benzoyl-2,7-dimethoxynaphthalene (2.92 g, 10 mmol) in CH2Cl2 (100 ml) was added AlCl3 (6.65 g, 50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H2O (30 ml). The aqueous layer was extracted with CHCl3 (30 ml × 3). The combined organic layers were washed with brine (30 ml × 3), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexane to give compound (I) as yellow platelets (m.p. 371.8–372.3 K, yield 1.45 g, 52%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 11.64 (s, 1H), 7.85 (d, 1H), 7.64–7.60 (m, 3H), 7.55 (tt, 1H), 7.43 (t, 2H) 7.08 (d, 1H), 6.89 (dd, 1H), 6.59 (d, 1H), 3.27 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 200.8, 162.8, 158.2, 140.8, 136.5, 134.1, 132.3, 130.1, 129.14, 128.8, 123.7, 116.5, 115.9, 113.7, 106.5, 54.5; IR (KBr): 3446, 1617, 1572, 1511, 1200; HRMS (m/z): [M + H]+ calcd for C18H15O3, 279.1021; found, 279.0999.

Refinement top

All the H-atoms could be located in difference Fourier maps. The OH hydrogen atom was freely refined: O1—H1 = 0.92 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing 50% probability displacement ellipsoids. The dashed line indicates an intramolecular O—H···O hydrogen bond.
[Figure 2] Fig. 2. A partial crystal packing diagram of compound (I), viewed down the b axis. The dashed lines indicate intra- and intermolecular O—H···O hydrogen bonds.
(2-Hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone top
Crystal data top
C18H14O3F(000) = 584
Mr = 278.29Dx = 1.362 Mg m3
Monoclinic, P21/cMelting point = 371.8–372.3 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 9.81012 (18) ÅCell parameters from 19252 reflections
b = 6.27891 (11) Åθ = 4.0–68.2°
c = 22.0737 (4) ŵ = 0.75 mm1
β = 93.167 (1)°T = 193 K
V = 1357.59 (4) Å3Block, yellow
Z = 40.60 × 0.40 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2496 independent reflections
Radiation source: rotating anode2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.0°
ω scansh = 1111
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 77
Tmin = 0.586, Tmax = 0.754l = 2626
20565 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3346P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2496 reflectionsΔρmax = 0.23 e Å3
196 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0146 (8)
Crystal data top
C18H14O3V = 1357.59 (4) Å3
Mr = 278.29Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.81012 (18) ŵ = 0.75 mm1
b = 6.27891 (11) ÅT = 193 K
c = 22.0737 (4) Å0.60 × 0.40 × 0.40 mm
β = 93.167 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2496 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2244 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.754Rint = 0.038
20565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
2496 reflectionsΔρmin = 0.16 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37752 (10)0.17334 (19)0.46905 (5)0.0478 (3)
O20.84529 (10)0.02213 (17)0.22739 (4)0.0442 (3)
O30.57091 (10)0.44133 (17)0.45195 (5)0.0482 (3)
C10.55482 (12)0.1185 (2)0.39823 (5)0.0336 (3)
C20.43388 (13)0.0609 (2)0.42511 (6)0.0387 (3)
C30.36518 (14)0.1302 (3)0.40877 (7)0.0451 (4)
H30.28460.16840.42810.054*
C40.41359 (14)0.2593 (2)0.36562 (7)0.0431 (3)
H40.36850.39020.35640.052*
C50.53019 (13)0.2030 (2)0.33398 (6)0.0363 (3)
C60.57599 (14)0.3323 (2)0.28681 (6)0.0407 (3)
H60.53210.46470.27840.049*
C70.68125 (14)0.2718 (2)0.25323 (6)0.0401 (3)
H70.71130.36120.22190.048*
C80.74557 (13)0.0737 (2)0.26554 (6)0.0356 (3)
C90.70639 (13)0.0537 (2)0.31195 (6)0.0335 (3)
H90.75120.18600.31940.040*
C100.59982 (12)0.0095 (2)0.34895 (5)0.0322 (3)
C110.63086 (13)0.3022 (2)0.42425 (5)0.0341 (3)
C120.78243 (13)0.3247 (2)0.42242 (5)0.0327 (3)
C130.87010 (14)0.1539 (2)0.43450 (6)0.0383 (3)
H130.83420.01630.44170.046*
C141.01009 (14)0.1857 (2)0.43590 (7)0.0443 (4)
H141.07010.06980.44480.053*
C151.06297 (14)0.3852 (3)0.42446 (7)0.0469 (4)
H151.15900.40540.42460.056*
C160.97576 (15)0.5548 (2)0.41281 (7)0.0456 (4)
H161.01190.69170.40490.055*
C170.83608 (14)0.5257 (2)0.41259 (6)0.0392 (3)
H170.77660.64370.40570.047*
C180.92146 (16)0.1669 (3)0.24071 (8)0.0527 (4)
H18A0.98940.18670.21030.063*
H18B0.96790.15450.28100.063*
H18C0.85950.28940.24000.063*
H10.428 (2)0.296 (4)0.4744 (11)0.092 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (5)0.0601 (7)0.0471 (6)0.0032 (5)0.0080 (4)0.0043 (5)
O20.0435 (5)0.0478 (6)0.0420 (5)0.0003 (4)0.0081 (4)0.0093 (4)
O30.0490 (6)0.0453 (6)0.0514 (6)0.0042 (5)0.0132 (5)0.0117 (5)
C10.0324 (6)0.0356 (7)0.0322 (6)0.0041 (5)0.0032 (5)0.0025 (5)
C20.0322 (6)0.0468 (8)0.0367 (7)0.0046 (6)0.0011 (5)0.0032 (6)
C30.0328 (7)0.0543 (9)0.0480 (8)0.0039 (6)0.0004 (6)0.0071 (7)
C40.0377 (7)0.0415 (8)0.0489 (8)0.0063 (6)0.0083 (6)0.0064 (6)
C50.0349 (6)0.0344 (7)0.0384 (7)0.0014 (5)0.0089 (5)0.0028 (5)
C60.0409 (7)0.0329 (7)0.0466 (8)0.0003 (6)0.0116 (6)0.0035 (6)
C70.0422 (7)0.0368 (7)0.0402 (7)0.0069 (6)0.0075 (6)0.0092 (6)
C80.0334 (6)0.0389 (7)0.0340 (6)0.0055 (5)0.0030 (5)0.0017 (5)
C90.0340 (6)0.0319 (7)0.0340 (6)0.0009 (5)0.0038 (5)0.0022 (5)
C100.0309 (6)0.0327 (7)0.0322 (6)0.0041 (5)0.0061 (5)0.0021 (5)
C110.0396 (7)0.0343 (7)0.0286 (6)0.0055 (5)0.0023 (5)0.0011 (5)
C120.0376 (7)0.0337 (7)0.0265 (6)0.0011 (5)0.0024 (5)0.0046 (5)
C130.0421 (7)0.0337 (7)0.0385 (7)0.0010 (6)0.0040 (5)0.0017 (6)
C140.0406 (7)0.0465 (8)0.0449 (8)0.0083 (6)0.0063 (6)0.0019 (6)
C150.0367 (7)0.0582 (9)0.0454 (8)0.0040 (7)0.0014 (6)0.0033 (7)
C160.0480 (8)0.0428 (8)0.0457 (8)0.0097 (6)0.0001 (6)0.0011 (6)
C170.0458 (8)0.0333 (7)0.0381 (7)0.0025 (6)0.0031 (6)0.0023 (6)
C180.0512 (9)0.0552 (10)0.0531 (9)0.0099 (7)0.0163 (7)0.0085 (7)
Geometric parameters (Å, º) top
O1—C21.3434 (17)C8—C91.3716 (18)
O1—H10.92 (2)C9—C101.4184 (18)
O2—C81.3646 (16)C9—H90.9500
O2—C181.4244 (18)C11—C121.4964 (18)
O3—C111.2340 (16)C12—C171.3895 (19)
C1—C21.4029 (18)C12—C131.3908 (18)
C1—C101.4414 (18)C13—C141.386 (2)
C1—C111.4728 (18)C13—H130.9500
C2—C31.413 (2)C14—C151.384 (2)
C3—C41.357 (2)C14—H140.9500
C3—H30.9500C15—C161.381 (2)
C4—C51.418 (2)C15—H150.9500
C4—H40.9500C16—C171.382 (2)
C5—C61.413 (2)C16—H160.9500
C5—C101.4233 (18)C17—H170.9500
C6—C71.358 (2)C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.4138 (19)C18—H18C0.9800
C7—H70.9500
C2—O1—H1107.2 (15)C9—C10—C1123.00 (12)
C8—O2—C18117.15 (11)C5—C10—C1119.21 (11)
C2—C1—C10118.47 (12)O3—C11—C1120.18 (12)
C2—C1—C11117.33 (12)O3—C11—C12116.62 (12)
C10—C1—C11124.15 (11)C1—C11—C12123.10 (11)
O1—C2—C1124.13 (13)C17—C12—C13119.65 (12)
O1—C2—C3114.90 (12)C17—C12—C11118.39 (11)
C1—C2—C3120.91 (13)C13—C12—C11121.80 (12)
C4—C3—C2120.41 (13)C14—C13—C12119.65 (13)
C4—C3—H3119.8C14—C13—H13120.2
C2—C3—H3119.8C12—C13—H13120.2
C3—C4—C5121.32 (13)C15—C14—C13120.45 (13)
C3—C4—H4119.3C15—C14—H14119.8
C5—C4—H4119.3C13—C14—H14119.8
C6—C5—C4121.16 (13)C16—C15—C14119.80 (13)
C6—C5—C10119.56 (12)C16—C15—H15120.1
C4—C5—C10119.26 (13)C14—C15—H15120.1
C7—C6—C5121.57 (13)C15—C16—C17120.20 (14)
C7—C6—H6119.2C15—C16—H16119.9
C5—C6—H6119.2C17—C16—H16119.9
C6—C7—C8119.07 (13)C16—C17—C12120.21 (13)
C6—C7—H7120.5C16—C17—H17119.9
C8—C7—H7120.5C12—C17—H17119.9
O2—C8—C9124.22 (12)O2—C18—H18A109.5
O2—C8—C7114.70 (12)O2—C18—H18B109.5
C9—C8—C7121.07 (12)H18A—C18—H18B109.5
C8—C9—C10120.84 (12)O2—C18—H18C109.5
C8—C9—H9119.6H18A—C18—H18C109.5
C10—C9—H9119.6H18B—C18—H18C109.5
C9—C10—C5117.70 (12)
C10—C1—C2—O1176.30 (12)C6—C5—C10—C1178.29 (11)
C11—C1—C2—O16.22 (19)C4—C5—C10—C13.48 (18)
C10—C1—C2—C36.53 (19)C2—C1—C10—C9168.90 (12)
C11—C1—C2—C3170.95 (12)C11—C1—C10—C913.80 (19)
O1—C2—C3—C4178.91 (13)C2—C1—C10—C57.45 (17)
C1—C2—C3—C41.5 (2)C11—C1—C10—C5169.85 (11)
C2—C3—C4—C52.7 (2)C2—C1—C11—O325.19 (18)
C3—C4—C5—C6176.55 (13)C10—C1—C11—O3157.48 (12)
C3—C4—C5—C101.7 (2)C2—C1—C11—C12150.82 (12)
C4—C5—C6—C7175.00 (13)C10—C1—C11—C1226.50 (18)
C10—C5—C6—C73.20 (19)O3—C11—C12—C1742.07 (17)
C5—C6—C7—C80.6 (2)C1—C11—C12—C17141.79 (12)
C18—O2—C8—C96.22 (19)O3—C11—C12—C13133.31 (13)
C18—O2—C8—C7174.85 (12)C1—C11—C12—C1342.84 (18)
C6—C7—C8—O2176.72 (12)C17—C12—C13—C140.74 (19)
C6—C7—C8—C92.25 (19)C11—C12—C13—C14176.06 (12)
O2—C8—C9—C10178.76 (11)C12—C13—C14—C151.0 (2)
C7—C8—C9—C100.11 (19)C13—C14—C15—C161.4 (2)
C8—C9—C10—C53.58 (18)C14—C15—C16—C170.0 (2)
C8—C9—C10—C1179.98 (11)C15—C16—C17—C121.8 (2)
C6—C5—C10—C95.17 (17)C13—C12—C17—C162.1 (2)
C4—C5—C10—C9173.06 (12)C11—C12—C17—C16177.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.92 (2)1.77 (2)2.5792 (14)145 (2)
O1—H1···O3i0.92 (2)2.32 (2)3.0088 (16)132.4 (18)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H14O3
Mr278.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)9.81012 (18), 6.27891 (11), 22.0737 (4)
β (°) 93.167 (1)
V3)1357.59 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.586, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
20565, 2496, 2244
Rint0.038
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.08
No. of reflections2496
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.92 (2)1.77 (2)2.5792 (14)145 (2)
O1—H1···O3i0.92 (2)2.32 (2)3.0088 (16)132.4 (18)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by a Sasagawa Scientific research grant from the Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds