organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Di­iodo­anthracene

aDepartment of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: isobe@m.tohoku.ac.jp

(Received 25 August 2010; accepted 31 August 2010; online 8 September 2010)

The mol­ecule of the title compound, C14H8I2, an inter­mediate in the synthesis of organic materials, is nearly planar, the maximum deviation from the mean plane being 0.032 (1) Å for the C atoms and 0.082 (2) Å for the I atoms. In the crystal structure, a sandwich–herringbone arrangement of mol­ecules is observed, whereas a columnar π-stacking arrangement has been reported for the chlorinated congener 1,8-dichloro­anthracene. Similar effects of halogen substituents on the modulation of packing arrangements are reported for halogenated aromatic compounds such as tetra­cenes and chrycenes.

Related literature

For the synthesis, see: Lovell & Joule (1997[Lovell, J. M. & Joule, J. A. (1997). Synth. Commun. 27, 1209-1216.]); Goichi et al. (2005[Goichi, M., Segawa, K., Suzuki, S. & Toyota, S. (2005). Synthesis, pp. 2116-2118.]). For the crystal structure of related 1,8-dichloro­anthracenes, see: Desvergne et al., (1978[Desvergne, J.-P., Chekpo, F. & Bouas-Laurent, H. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84-87.]); Benites et al., (1996[Benites, M. delR., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647-648.]). For similar halogen effects on the arrangement of aromatic mol­ecules, see: Moon et al. (2004[Moon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A. J., Siegrist, T., Kloc, C. & Bao, Z. (2004). J. Am. Chem. Soc. 126, 15322-15323.]); Isobe et al. (2009[Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026-4028.]). For an example of synthetic utility of the title compound in organic materials, see: Nakanishi et al. (2010[Nakanishi, W., Hitosugi, S., Piskareva, A., Shimada, Y., Taka, H., Kita, H. & Isobe, H. (2010). Angew. Chem. Int. Ed. doi:10.1002/anie.201002432.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8I2

  • Mr = 430.00

  • Monoclinic, P 21 /c

  • a = 10.1167 (11) Å

  • b = 10.8680 (11) Å

  • c = 11.3930 (12) Å

  • β = 101.829 (1)°

  • V = 1226.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.429, Tmax = 0.630

  • 13646 measured reflections

  • 2904 independent reflections

  • 2783 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.038

  • S = 1.09

  • 2904 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Acenes are important compounds for the development of organic electronics, and the halogenated derivatives are of topical interest due to the unique packing arrangements (Moon et al., 2004; Isobe et al., 2009). The crystal structure of 1,8-dihaloanthracenes has been reported only for a chlorinated compound (Desvergne et al., 1978; Benites et al., 1996), and a columnar π-stacking arrangement of the molecules in the crystal has been revealed. We obtained a single-crystal of 1,8-diiodoanthracene and found a sandwich-herringbone arrangement of the molecules in the crystal. The molecular structure is shown in Fig. 1, and the packing structure is shown in Fig. 2. The distance of π-stacking between the sandwiched dimer is 3.401 Å. The CH-π and halogen-π distances for the herringbone contacts are 2.908 (7) and 3.446 (3) Å, respectively.

Related literature top

For the synthesis, see: Lovell et al. (1997); Goichi et al. (2005). For the crystal structure of related 1,8-dichloroanthracenes, see: Desvergne et al., (1978); Benites et al., (1996). For similar halogen effects on the arrangement of aromatic molecules, see: Moon et al. (2004); Isobe et al. (2009). For an example of synthetic utility of the title compound in organic materials, see: Nakanishi et al. (2010).

Experimental top

The title compound was synthesized from 4,5-diiodo-9-anthrone by a procedure similar to those reported in literatures (Lovell et al., 1997; Goichi et al., 2005). A single-crystal suitable for X-ray crystallographic analysis was obtained by recrystallization from a mixture of hexanes and dichloromethane (5:1).

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.9 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The sandwich-herringbone packing of the title compound, viewed along the a axis.
1,8-Diiodoanthracene top
Crystal data top
C14H8I2F(000) = 792
Mr = 430.00Dx = 2.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5335 reflections
a = 10.1167 (11) Åθ = 2.6–27.8°
b = 10.8680 (11) ŵ = 5.10 mm1
c = 11.3930 (12) ÅT = 100 K
β = 101.829 (1)°Cubic, green
V = 1226.0 (2) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2904 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2783 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.016
Detector resolution: 8.333 pixels mm-1θmax = 27.9°, θmin = 2.1°
ϕ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.429, Tmax = 0.630l = 1414
13646 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.8912P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max = 0.005
145 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C14H8I2V = 1226.0 (2) Å3
Mr = 430.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1167 (11) ŵ = 5.10 mm1
b = 10.8680 (11) ÅT = 100 K
c = 11.3930 (12) Å0.20 × 0.20 × 0.10 mm
β = 101.829 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2783 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.630Rint = 0.016
13646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.09Δρmax = 0.62 e Å3
2904 reflectionsΔρmin = 0.63 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.760513 (11)1.050372 (9)0.779962 (10)0.01704 (4)
I20.242248 (11)1.052601 (9)0.591438 (9)0.01734 (4)
C80.21957 (18)0.93209 (15)0.73076 (15)0.0147 (3)
C90.46782 (17)0.93129 (14)0.81821 (14)0.0138 (3)
H70.48390.98270.75520.017*
C130.33549 (17)0.89456 (14)0.81903 (14)0.0136 (3)
C70.09231 (17)0.89426 (16)0.73555 (15)0.0178 (3)
H60.01790.91950.67520.021*
C50.17608 (18)0.77913 (15)0.91729 (15)0.0174 (3)
H40.16000.72780.98040.021*
C60.07051 (17)0.81682 (16)0.83110 (15)0.0188 (3)
H50.01850.79150.83440.023*
C140.31114 (17)0.81568 (14)0.91435 (14)0.0144 (3)
C110.57708 (17)0.89446 (14)0.90752 (14)0.0137 (3)
C120.55249 (17)0.81532 (14)1.00247 (14)0.0146 (3)
C100.42066 (17)0.77828 (15)1.00274 (14)0.0158 (3)
H80.40480.72581.06510.019*
C40.66292 (18)0.77839 (15)1.09544 (15)0.0173 (3)
H30.64700.72621.15800.021*
C10.71420 (18)0.93258 (15)0.91241 (15)0.0143 (3)
C20.81750 (17)0.89582 (15)1.00237 (15)0.0171 (3)
H10.90710.92251.00320.020*
C30.79074 (18)0.81744 (16)1.09492 (15)0.0186 (3)
H20.86310.79201.15720.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01809 (7)0.01676 (6)0.01754 (7)0.00121 (4)0.00662 (5)0.00173 (4)
I20.02054 (7)0.01650 (7)0.01391 (6)0.00081 (4)0.00105 (5)0.00270 (3)
C80.0183 (8)0.0134 (7)0.0128 (7)0.0009 (6)0.0040 (6)0.0012 (5)
C90.0178 (7)0.0117 (7)0.0126 (7)0.0006 (6)0.0042 (6)0.0000 (5)
C130.0178 (8)0.0097 (7)0.0139 (7)0.0001 (6)0.0045 (6)0.0019 (5)
C70.0160 (8)0.0192 (8)0.0173 (8)0.0001 (6)0.0015 (6)0.0039 (6)
C50.0231 (8)0.0144 (7)0.0163 (7)0.0032 (6)0.0083 (6)0.0024 (6)
C60.0170 (8)0.0199 (8)0.0209 (8)0.0043 (6)0.0069 (6)0.0057 (6)
C140.0193 (8)0.0105 (7)0.0141 (7)0.0005 (6)0.0051 (6)0.0023 (6)
C110.0182 (8)0.0100 (7)0.0134 (7)0.0015 (6)0.0048 (6)0.0012 (5)
C120.0200 (8)0.0104 (7)0.0135 (7)0.0015 (6)0.0040 (6)0.0008 (6)
C100.0225 (8)0.0116 (7)0.0145 (7)0.0006 (6)0.0063 (6)0.0012 (6)
C40.0245 (8)0.0130 (7)0.0141 (7)0.0045 (6)0.0032 (6)0.0018 (6)
C10.0182 (8)0.0114 (7)0.0145 (7)0.0022 (6)0.0060 (6)0.0017 (5)
C20.0162 (8)0.0168 (8)0.0179 (8)0.0019 (6)0.0026 (6)0.0030 (6)
C30.0218 (8)0.0170 (8)0.0152 (7)0.0052 (6)0.0006 (6)0.0009 (6)
Geometric parameters (Å, º) top
I1—C12.1037 (17)C6—H50.9500
I2—C82.1064 (17)C14—C101.396 (2)
C8—C71.363 (2)C11—C11.438 (2)
C8—C131.439 (2)C11—C121.443 (2)
C9—C111.399 (2)C12—C101.394 (2)
C9—C131.399 (2)C12—C41.430 (2)
C9—H70.9500C10—H80.9500
C13—C141.444 (2)C4—C31.362 (3)
C7—C61.428 (2)C4—H30.9500
C7—H60.9500C1—C21.365 (2)
C5—C61.357 (3)C2—C31.424 (2)
C5—C141.430 (2)C2—H10.9500
C5—H40.9500C3—H20.9500
C7—C8—C13121.86 (16)C9—C11—C1123.92 (15)
C7—C8—I2117.86 (12)C9—C11—C12118.95 (15)
C13—C8—I2120.26 (12)C1—C11—C12117.12 (15)
C11—C9—C13121.88 (15)C10—C12—C4121.32 (15)
C11—C9—H7119.1C10—C12—C11119.07 (15)
C13—C9—H7119.1C4—C12—C11119.60 (15)
C9—C13—C8123.96 (15)C12—C10—C14122.18 (15)
C9—C13—C14119.05 (15)C12—C10—H8118.9
C8—C13—C14116.99 (15)C14—C10—H8118.9
C8—C7—C6120.19 (16)C3—C4—C12120.49 (15)
C8—C7—H6119.9C3—C4—H3119.8
C6—C7—H6119.9C12—C4—H3119.8
C6—C5—C14120.88 (15)C2—C1—C11121.93 (15)
C6—C5—H4119.6C2—C1—I1117.90 (13)
C14—C5—H4119.6C11—C1—I1120.17 (12)
C5—C6—C7120.50 (16)C1—C2—C3119.90 (16)
C5—C6—H5119.8C1—C2—H1120.0
C7—C6—H5119.8C3—C2—H1120.0
C10—C14—C5121.54 (15)C4—C3—C2120.95 (16)
C10—C14—C13118.87 (15)C4—C3—H2119.5
C5—C14—C13119.59 (15)C2—C3—H2119.5
C11—C9—C13—C8178.61 (15)C9—C11—C12—C100.2 (2)
C11—C9—C13—C140.4 (2)C1—C11—C12—C10178.63 (14)
C7—C8—C13—C9179.73 (16)C9—C11—C12—C4179.06 (15)
I2—C8—C13—C91.4 (2)C1—C11—C12—C40.2 (2)
C7—C8—C13—C140.7 (2)C4—C12—C10—C14178.48 (15)
I2—C8—C13—C14177.65 (11)C11—C12—C10—C140.3 (2)
C13—C8—C7—C61.1 (2)C5—C14—C10—C12178.59 (15)
I2—C8—C7—C6177.28 (12)C13—C14—C10—C120.5 (2)
C14—C5—C6—C70.1 (3)C10—C12—C4—C3178.73 (16)
C8—C7—C6—C50.7 (3)C11—C12—C4—C30.1 (2)
C6—C5—C14—C10179.61 (16)C9—C11—C1—C2178.97 (16)
C6—C5—C14—C130.5 (2)C12—C11—C1—C20.2 (2)
C9—C13—C14—C100.1 (2)C9—C11—C1—I10.2 (2)
C8—C13—C14—C10179.24 (14)C12—C11—C1—I1178.97 (11)
C9—C13—C14—C5178.98 (15)C11—C1—C2—C30.0 (2)
C8—C13—C14—C50.1 (2)I1—C1—C2—C3179.15 (12)
C13—C9—C11—C1178.17 (15)C12—C4—C3—C20.1 (2)
C13—C9—C11—C120.6 (2)C1—C2—C3—C40.1 (2)

Experimental details

Crystal data
Chemical formulaC14H8I2
Mr430.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.1167 (11), 10.8680 (11), 11.3930 (12)
β (°) 101.829 (1)
V3)1226.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.429, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
13646, 2904, 2783
Rint0.016
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.038, 1.09
No. of reflections2904
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.63

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN) and the Global COE Program (Mol­ecular Complex Chemistry). We thank Professor T. Iwamoto for generous time for X-ray analysis. SH thanks the Global COE program for a predoctoral fellowship.

References

First citationBenites, M. delR., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647–648.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesvergne, J.-P., Chekpo, F. & Bouas-Laurent, H. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84–87.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoichi, M., Segawa, K., Suzuki, S. & Toyota, S. (2005). Synthesis, pp. 2116–2118.  Google Scholar
First citationIsobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026–4028.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationLovell, J. M. & Joule, J. A. (1997). Synth. Commun. 27, 1209–1216.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A. J., Siegrist, T., Kloc, C. & Bao, Z. (2004). J. Am. Chem. Soc. 126, 15322–15323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakanishi, W., Hitosugi, S., Piskareva, A., Shimada, Y., Taka, H., Kita, H. & Isobe, H. (2010). Angew. Chem. Int. Ed. doi:10.1002/anie.201002432.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds