organic compounds
1,8-Diiodoanthracene
aDepartment of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: isobe@m.tohoku.ac.jp
The molecule of the title compound, C14H8I2, an intermediate in the synthesis of organic materials, is nearly planar, the maximum deviation from the mean plane being 0.032 (1) Å for the C atoms and 0.082 (2) Å for the I atoms. In the a sandwich–herringbone arrangement of molecules is observed, whereas a columnar π-stacking arrangement has been reported for the chlorinated congener 1,8-dichloroanthracene. Similar effects of halogen substituents on the modulation of packing arrangements are reported for halogenated aromatic compounds such as tetracenes and chrycenes.
Related literature
For the synthesis, see: Lovell & Joule (1997); Goichi et al. (2005). For the of related 1,8-dichloroanthracenes, see: Desvergne et al., (1978); Benites et al., (1996). For similar halogen effects on the arrangement of aromatic molecules, see: Moon et al. (2004); Isobe et al. (2009). For an example of synthetic utility of the title compound in organic materials, see: Nakanishi et al. (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810035191/jh2197sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810035191/jh2197Isup2.hkl
The title compound was synthesized from 4,5-diiodo-9-anthrone by a procedure similar to those reported in literatures (Lovell et al., 1997; Goichi et al., 2005). A single-crystal suitable for X-ray crystallographic analysis was obtained by recrystallization from a mixture of hexanes and dichloromethane (5:1).
H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.9 Å (aromatic) and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).C14H8I2 | F(000) = 792 |
Mr = 430.00 | Dx = 2.330 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5335 reflections |
a = 10.1167 (11) Å | θ = 2.6–27.8° |
b = 10.8680 (11) Å | µ = 5.10 mm−1 |
c = 11.3930 (12) Å | T = 100 K |
β = 101.829 (1)° | Cubic, green |
V = 1226.0 (2) Å3 | 0.20 × 0.20 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2904 independent reflections |
Radiation source: Bruker TXS fine-focus rotating anode | 2783 reflections with I > 2σ(I) |
Bruker Helios multilayer confocal mirror monochromator | Rint = 0.016 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.9°, θmin = 2.1° |
ϕ and ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→14 |
Tmin = 0.429, Tmax = 0.630 | l = −14→14 |
13646 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.038 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0197P)2 + 0.8912P] where P = (Fo2 + 2Fc2)/3 |
2904 reflections | (Δ/σ)max = 0.005 |
145 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
C14H8I2 | V = 1226.0 (2) Å3 |
Mr = 430.00 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1167 (11) Å | µ = 5.10 mm−1 |
b = 10.8680 (11) Å | T = 100 K |
c = 11.3930 (12) Å | 0.20 × 0.20 × 0.10 mm |
β = 101.829 (1)° |
Bruker APEXII CCD area-detector diffractometer | 2904 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2783 reflections with I > 2σ(I) |
Tmin = 0.429, Tmax = 0.630 | Rint = 0.016 |
13646 measured reflections |
R[F2 > 2σ(F2)] = 0.014 | 0 restraints |
wR(F2) = 0.038 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.62 e Å−3 |
2904 reflections | Δρmin = −0.63 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.760513 (11) | 1.050372 (9) | 0.779962 (10) | 0.01704 (4) | |
I2 | 0.242248 (11) | 1.052601 (9) | 0.591438 (9) | 0.01734 (4) | |
C8 | 0.21957 (18) | 0.93209 (15) | 0.73076 (15) | 0.0147 (3) | |
C9 | 0.46782 (17) | 0.93129 (14) | 0.81821 (14) | 0.0138 (3) | |
H7 | 0.4839 | 0.9827 | 0.7552 | 0.017* | |
C13 | 0.33549 (17) | 0.89456 (14) | 0.81903 (14) | 0.0136 (3) | |
C7 | 0.09231 (17) | 0.89426 (16) | 0.73555 (15) | 0.0178 (3) | |
H6 | 0.0179 | 0.9195 | 0.6752 | 0.021* | |
C5 | 0.17608 (18) | 0.77913 (15) | 0.91729 (15) | 0.0174 (3) | |
H4 | 0.1600 | 0.7278 | 0.9804 | 0.021* | |
C6 | 0.07051 (17) | 0.81682 (16) | 0.83110 (15) | 0.0188 (3) | |
H5 | −0.0185 | 0.7915 | 0.8344 | 0.023* | |
C14 | 0.31114 (17) | 0.81568 (14) | 0.91435 (14) | 0.0144 (3) | |
C11 | 0.57708 (17) | 0.89446 (14) | 0.90752 (14) | 0.0137 (3) | |
C12 | 0.55249 (17) | 0.81532 (14) | 1.00247 (14) | 0.0146 (3) | |
C10 | 0.42066 (17) | 0.77828 (15) | 1.00274 (14) | 0.0158 (3) | |
H8 | 0.4048 | 0.7258 | 1.0651 | 0.019* | |
C4 | 0.66292 (18) | 0.77839 (15) | 1.09544 (15) | 0.0173 (3) | |
H3 | 0.6470 | 0.7262 | 1.1580 | 0.021* | |
C1 | 0.71420 (18) | 0.93258 (15) | 0.91241 (15) | 0.0143 (3) | |
C2 | 0.81750 (17) | 0.89582 (15) | 1.00237 (15) | 0.0171 (3) | |
H1 | 0.9071 | 0.9225 | 1.0032 | 0.020* | |
C3 | 0.79074 (18) | 0.81744 (16) | 1.09492 (15) | 0.0186 (3) | |
H2 | 0.8631 | 0.7920 | 1.1572 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01809 (7) | 0.01676 (6) | 0.01754 (7) | −0.00121 (4) | 0.00662 (5) | 0.00173 (4) |
I2 | 0.02054 (7) | 0.01650 (7) | 0.01391 (6) | 0.00081 (4) | 0.00105 (5) | 0.00270 (3) |
C8 | 0.0183 (8) | 0.0134 (7) | 0.0128 (7) | 0.0009 (6) | 0.0040 (6) | −0.0012 (5) |
C9 | 0.0178 (7) | 0.0117 (7) | 0.0126 (7) | 0.0006 (6) | 0.0042 (6) | 0.0000 (5) |
C13 | 0.0178 (8) | 0.0097 (7) | 0.0139 (7) | 0.0001 (6) | 0.0045 (6) | −0.0019 (5) |
C7 | 0.0160 (8) | 0.0192 (8) | 0.0173 (8) | 0.0001 (6) | 0.0015 (6) | −0.0039 (6) |
C5 | 0.0231 (8) | 0.0144 (7) | 0.0163 (7) | −0.0032 (6) | 0.0083 (6) | −0.0024 (6) |
C6 | 0.0170 (8) | 0.0199 (8) | 0.0209 (8) | −0.0043 (6) | 0.0069 (6) | −0.0057 (6) |
C14 | 0.0193 (8) | 0.0105 (7) | 0.0141 (7) | −0.0005 (6) | 0.0051 (6) | −0.0023 (6) |
C11 | 0.0182 (8) | 0.0100 (7) | 0.0134 (7) | 0.0015 (6) | 0.0048 (6) | −0.0012 (5) |
C12 | 0.0200 (8) | 0.0104 (7) | 0.0135 (7) | 0.0015 (6) | 0.0040 (6) | −0.0008 (6) |
C10 | 0.0225 (8) | 0.0116 (7) | 0.0145 (7) | 0.0006 (6) | 0.0063 (6) | 0.0012 (6) |
C4 | 0.0245 (8) | 0.0130 (7) | 0.0141 (7) | 0.0045 (6) | 0.0032 (6) | 0.0018 (6) |
C1 | 0.0182 (8) | 0.0114 (7) | 0.0145 (7) | 0.0022 (6) | 0.0060 (6) | −0.0017 (5) |
C2 | 0.0162 (8) | 0.0168 (8) | 0.0179 (8) | 0.0019 (6) | 0.0026 (6) | −0.0030 (6) |
C3 | 0.0218 (8) | 0.0170 (8) | 0.0152 (7) | 0.0052 (6) | −0.0006 (6) | −0.0009 (6) |
I1—C1 | 2.1037 (17) | C6—H5 | 0.9500 |
I2—C8 | 2.1064 (17) | C14—C10 | 1.396 (2) |
C8—C7 | 1.363 (2) | C11—C1 | 1.438 (2) |
C8—C13 | 1.439 (2) | C11—C12 | 1.443 (2) |
C9—C11 | 1.399 (2) | C12—C10 | 1.394 (2) |
C9—C13 | 1.399 (2) | C12—C4 | 1.430 (2) |
C9—H7 | 0.9500 | C10—H8 | 0.9500 |
C13—C14 | 1.444 (2) | C4—C3 | 1.362 (3) |
C7—C6 | 1.428 (2) | C4—H3 | 0.9500 |
C7—H6 | 0.9500 | C1—C2 | 1.365 (2) |
C5—C6 | 1.357 (3) | C2—C3 | 1.424 (2) |
C5—C14 | 1.430 (2) | C2—H1 | 0.9500 |
C5—H4 | 0.9500 | C3—H2 | 0.9500 |
C7—C8—C13 | 121.86 (16) | C9—C11—C1 | 123.92 (15) |
C7—C8—I2 | 117.86 (12) | C9—C11—C12 | 118.95 (15) |
C13—C8—I2 | 120.26 (12) | C1—C11—C12 | 117.12 (15) |
C11—C9—C13 | 121.88 (15) | C10—C12—C4 | 121.32 (15) |
C11—C9—H7 | 119.1 | C10—C12—C11 | 119.07 (15) |
C13—C9—H7 | 119.1 | C4—C12—C11 | 119.60 (15) |
C9—C13—C8 | 123.96 (15) | C12—C10—C14 | 122.18 (15) |
C9—C13—C14 | 119.05 (15) | C12—C10—H8 | 118.9 |
C8—C13—C14 | 116.99 (15) | C14—C10—H8 | 118.9 |
C8—C7—C6 | 120.19 (16) | C3—C4—C12 | 120.49 (15) |
C8—C7—H6 | 119.9 | C3—C4—H3 | 119.8 |
C6—C7—H6 | 119.9 | C12—C4—H3 | 119.8 |
C6—C5—C14 | 120.88 (15) | C2—C1—C11 | 121.93 (15) |
C6—C5—H4 | 119.6 | C2—C1—I1 | 117.90 (13) |
C14—C5—H4 | 119.6 | C11—C1—I1 | 120.17 (12) |
C5—C6—C7 | 120.50 (16) | C1—C2—C3 | 119.90 (16) |
C5—C6—H5 | 119.8 | C1—C2—H1 | 120.0 |
C7—C6—H5 | 119.8 | C3—C2—H1 | 120.0 |
C10—C14—C5 | 121.54 (15) | C4—C3—C2 | 120.95 (16) |
C10—C14—C13 | 118.87 (15) | C4—C3—H2 | 119.5 |
C5—C14—C13 | 119.59 (15) | C2—C3—H2 | 119.5 |
C11—C9—C13—C8 | 178.61 (15) | C9—C11—C12—C10 | −0.2 (2) |
C11—C9—C13—C14 | −0.4 (2) | C1—C11—C12—C10 | 178.63 (14) |
C7—C8—C13—C9 | −179.73 (16) | C9—C11—C12—C4 | −179.06 (15) |
I2—C8—C13—C9 | −1.4 (2) | C1—C11—C12—C4 | −0.2 (2) |
C7—C8—C13—C14 | −0.7 (2) | C4—C12—C10—C14 | 178.48 (15) |
I2—C8—C13—C14 | 177.65 (11) | C11—C12—C10—C14 | −0.3 (2) |
C13—C8—C7—C6 | 1.1 (2) | C5—C14—C10—C12 | −178.59 (15) |
I2—C8—C7—C6 | −177.28 (12) | C13—C14—C10—C12 | 0.5 (2) |
C14—C5—C6—C7 | −0.1 (3) | C10—C12—C4—C3 | −178.73 (16) |
C8—C7—C6—C5 | −0.7 (3) | C11—C12—C4—C3 | 0.1 (2) |
C6—C5—C14—C10 | 179.61 (16) | C9—C11—C1—C2 | 178.97 (16) |
C6—C5—C14—C13 | 0.5 (2) | C12—C11—C1—C2 | 0.2 (2) |
C9—C13—C14—C10 | −0.1 (2) | C9—C11—C1—I1 | −0.2 (2) |
C8—C13—C14—C10 | −179.24 (14) | C12—C11—C1—I1 | −178.97 (11) |
C9—C13—C14—C5 | 178.98 (15) | C11—C1—C2—C3 | 0.0 (2) |
C8—C13—C14—C5 | −0.1 (2) | I1—C1—C2—C3 | 179.15 (12) |
C13—C9—C11—C1 | −178.17 (15) | C12—C4—C3—C2 | 0.1 (2) |
C13—C9—C11—C12 | 0.6 (2) | C1—C2—C3—C4 | −0.1 (2) |
Experimental details
Crystal data | |
Chemical formula | C14H8I2 |
Mr | 430.00 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.1167 (11), 10.8680 (11), 11.3930 (12) |
β (°) | 101.829 (1) |
V (Å3) | 1226.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.10 |
Crystal size (mm) | 0.20 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.429, 0.630 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13646, 2904, 2783 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.014, 0.038, 1.09 |
No. of reflections | 2904 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.63 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN) and the Global COE Program (Molecular Complex Chemistry). We thank Professor T. Iwamoto for generous time for X-ray analysis. SH thanks the Global COE program for a predoctoral fellowship.
References
Benites, M. delR., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647–648. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desvergne, J.-P., Chekpo, F. & Bouas-Laurent, H. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84–87. CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Goichi, M., Segawa, K., Suzuki, S. & Toyota, S. (2005). Synthesis, pp. 2116–2118. Google Scholar
Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026–4028. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Lovell, J. M. & Joule, J. A. (1997). Synth. Commun. 27, 1209–1216. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A. J., Siegrist, T., Kloc, C. & Bao, Z. (2004). J. Am. Chem. Soc. 126, 15322–15323. Web of Science CrossRef PubMed CAS Google Scholar
Nakanishi, W., Hitosugi, S., Piskareva, A., Shimada, Y., Taka, H., Kita, H. & Isobe, H. (2010). Angew. Chem. Int. Ed. doi:10.1002/anie.201002432. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acenes are important compounds for the development of organic electronics, and the halogenated derivatives are of topical interest due to the unique packing arrangements (Moon et al., 2004; Isobe et al., 2009). The crystal structure of 1,8-dihaloanthracenes has been reported only for a chlorinated compound (Desvergne et al., 1978; Benites et al., 1996), and a columnar π-stacking arrangement of the molecules in the crystal has been revealed. We obtained a single-crystal of 1,8-diiodoanthracene and found a sandwich-herringbone arrangement of the molecules in the crystal. The molecular structure is shown in Fig. 1, and the packing structure is shown in Fig. 2. The distance of π-stacking between the sandwiched dimer is 3.401 Å. The CH-π and halogen-π distances for the herringbone contacts are 2.908 (7) and 3.446 (3) Å, respectively.