metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­{[(E)-2-styrylpyrazine-κN3]copper(II)}

aDepartment of Materials Science and Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, People's Republic of China, and bDepartment of Basic Science, Tianjin Agricultural University, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhoujianguo2001@gmail.com

(Received 25 August 2010; accepted 19 September 2010; online 30 September 2010)

In the binuclear title compound, [Cu2(CH3COO)4(C12H10N2)2], the copper(II) ions are coordinated by four O atoms from two pairs of bridging acetate ligands and one N atom from a (E)-2-styryl­pyrazine ligand in a distorted tetra­hedral geometry. The structure displays no hydrogen bonding or ππ stacking inter­actions between the discrete binuclear entities.

Related literature

For heterocyclic ligands as building tectons of the supra­molecular lattice in inorganic-organic coordination chemistry, see: Batten (2001[Batten, S. R. (2001). CrystEngComm, 18, 1-7.]); Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2940-2509.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C12H10N2)2]

  • Mr = 727.70

  • Triclinic, [P \overline 1]

  • a = 10.519 (4) Å

  • b = 10.755 (4) Å

  • c = 15.924 (6) Å

  • α = 80.829 (6)°

  • β = 71.321 (6)°

  • γ = 74.300 (6)°

  • V = 1637.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 1.000

  • 9491 measured reflections

  • 6662 independent reflections

  • 3702 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.109

  • S = 0.99

  • 6662 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Heterocyclic derivative ligands, as the excellent building tectons of supramolecular lattice, are very popular in the inorganic-organic coordination chemistry (Batten (2001); Kitagawa et al. (2007); Moulton et al. (2001)).

In this paper, (E)-2-styrylpyrazine was employed as a terminal ligand to assembly with Cu(OAc)2 to afford a binuclear complex, in which the Cu(II) displays a tetrahedral coordination geometry, and coordinated by four oxygen atoms from two pairs of acetates and one nitrogen donor from one (E)-2-styrylpyrazine ligand (see figure 1). The dimeric cage can be properly described as the paddle-wheel unit.

Further investigation on its supramolecular interaction reveals that no secondary contact such as hydrogen bonding and pi···pi stacking interaction is observed between these diecrete units.

Related literature top

For heterocyclic ligands as building tectons of the supramolecular lattice in inorganic-organic coordination chemistry, see: Batten (2001); Kitagawa et al. (2007); Moulton & Zaworotko (2001).

Experimental top

A water (8 ml) solution containing Cu(OAc)2 (18.1 mg, 0.1 mmol) and (E)-2-styrylpyrazine (18.2 mg, 0.1 mmol) was heated to 100 \%C for 24 h and subsequently cooled to room temperature at a rate of 1 \%C/h. Blue block shape crystals were obtained.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distanceof 0.93 \%A, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Representation of this complex with atomic labels of asymmetric unit and coordination sphere, shown with 30% probability displacement ellipsoids.
Tetra-µ-acetato-κ8O:O'-bis{[(E)-2-styrylpyrazine- κN3]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C12H10N2)2]Z = 2
Mr = 727.70F(000) = 748
Triclinic, P1Dx = 1.476 Mg m3
a = 10.519 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.755 (4) ÅCell parameters from 715 reflections
c = 15.924 (6) Åθ = 2.5–23.8°
α = 80.829 (6)°µ = 1.35 mm1
β = 71.321 (6)°T = 293 K
γ = 74.300 (6)°Block, blue
V = 1637.7 (10) Å30.24 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6662 independent reflections
Radiation source: fine-focus sealed tube3702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 713
Tmin = 0.750, Tmax = 1.000k = 1213
9491 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
6662 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu2(C2H3O2)4(C12H10N2)2]γ = 74.300 (6)°
Mr = 727.70V = 1637.7 (10) Å3
Triclinic, P1Z = 2
a = 10.519 (4) ÅMo Kα radiation
b = 10.755 (4) ŵ = 1.35 mm1
c = 15.924 (6) ÅT = 293 K
α = 80.829 (6)°0.24 × 0.20 × 0.16 mm
β = 71.321 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3702 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.031
9491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.99Δρmax = 0.42 e Å3
6662 reflectionsΔρmin = 0.46 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75479 (5)0.39534 (4)0.21433 (3)0.04088 (17)
Cu20.66890 (5)0.61865 (4)0.28275 (3)0.04079 (17)
O10.8527 (3)0.3387 (3)0.30458 (19)0.0606 (9)
O20.7892 (3)0.5310 (3)0.35870 (18)0.0555 (8)
O30.9072 (3)0.4732 (2)0.13965 (18)0.0528 (8)
O40.8294 (3)0.6656 (2)0.19611 (18)0.0522 (8)
O50.5672 (3)0.6635 (3)0.19240 (18)0.0528 (8)
O60.6483 (3)0.4740 (3)0.13148 (18)0.0542 (8)
O70.5860 (3)0.3590 (2)0.30257 (19)0.0568 (8)
O80.5185 (3)0.5471 (3)0.36340 (18)0.0549 (8)
N10.8234 (3)0.2056 (3)0.1613 (2)0.0345 (8)
N20.9035 (3)0.0403 (3)0.1022 (2)0.0394 (8)
N30.5837 (3)0.8058 (3)0.3410 (2)0.0356 (8)
N40.4639 (3)1.0502 (3)0.4028 (2)0.0399 (8)
C10.6179 (4)0.0523 (4)0.1111 (3)0.0513 (12)
H10.57710.02940.09020.062*
C20.5709 (5)0.0916 (5)0.1708 (3)0.0646 (13)
H20.49910.03610.19000.078*
C30.6274 (6)0.2106 (6)0.2026 (3)0.0778 (16)
H30.59310.23760.24190.093*
C40.7352 (6)0.2896 (5)0.1760 (4)0.0830 (18)
H40.77710.36980.19920.100*
C50.7832 (5)0.2519 (4)0.1149 (3)0.0672 (14)
H50.85530.30760.09620.081*
C60.7237 (4)0.1307 (4)0.0814 (3)0.0440 (10)
C70.7775 (4)0.0940 (4)0.0172 (3)0.0453 (11)
H70.83780.15970.00620.054*
C80.7499 (4)0.0227 (3)0.0114 (2)0.0403 (10)
H80.68790.08930.01000.048*
C90.8096 (4)0.0531 (3)0.0735 (2)0.0343 (9)
C100.9545 (4)0.0093 (4)0.1601 (3)0.0427 (10)
H101.01910.07250.18150.051*
C110.9155 (4)0.1129 (4)0.1895 (3)0.0402 (10)
H110.95450.13040.22990.048*
C120.7714 (4)0.1761 (3)0.1035 (2)0.0390 (10)
H120.70710.24000.08220.047*
C130.4607 (4)0.8311 (4)0.4013 (3)0.0415 (10)
H130.41440.76500.42330.050*
C140.3986 (4)0.9537 (4)0.4329 (2)0.0363 (9)
C150.5867 (4)1.0225 (4)0.3440 (3)0.0414 (10)
H150.63461.08760.32280.050*
C160.6474 (4)0.9020 (4)0.3128 (2)0.0398 (10)
H160.73430.88790.27130.048*
C170.2624 (4)0.9800 (4)0.4969 (2)0.0435 (11)
H170.21740.91260.51630.052*
C180.1986 (4)1.0933 (4)0.5294 (2)0.0401 (10)
H180.24621.15880.50970.048*
C190.0615 (4)1.1276 (4)0.5929 (3)0.0428 (10)
C200.0289 (4)1.0469 (5)0.6190 (3)0.0556 (12)
H200.00130.96530.59750.067*
C210.1587 (5)1.0852 (6)0.6760 (3)0.0763 (16)
H210.21771.02920.69300.092*
C220.2021 (6)1.2048 (7)0.7080 (3)0.0865 (19)
H220.29121.23100.74530.104*
C230.1136 (6)1.2863 (5)0.6848 (4)0.0830 (18)
H230.14181.36700.70770.100*
C240.0172 (5)1.2479 (4)0.6276 (3)0.0586 (13)
H240.07671.30340.61190.070*
C250.8544 (5)0.4148 (4)0.3563 (3)0.0509 (12)
C260.9394 (6)0.3622 (4)0.4186 (3)0.0818 (17)
H26A0.95640.43260.44040.123*
H26B1.02570.30810.38790.123*
H26C0.89080.31210.46770.123*
C270.9178 (4)0.5848 (4)0.1444 (3)0.0418 (10)
C281.0436 (4)0.6262 (4)0.0839 (3)0.0619 (13)
H28A1.12150.58440.10530.093*
H28B1.02890.71850.08270.093*
H28C1.06080.60230.02500.093*
C290.5753 (4)0.5882 (4)0.1377 (3)0.0453 (11)
C300.4905 (5)0.6373 (4)0.0744 (3)0.0737 (15)
H30A0.42350.71530.09430.111*
H30B0.44400.57290.07230.111*
H30C0.54960.65510.01620.111*
C310.5038 (4)0.4367 (4)0.3580 (3)0.0457 (11)
C320.3805 (5)0.3961 (4)0.4214 (3)0.0717 (16)
H32A0.36540.42280.47930.108*
H32B0.39560.30360.42470.108*
H32C0.30100.43590.40120.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0487 (4)0.0295 (3)0.0416 (3)0.0043 (2)0.0094 (3)0.0116 (2)
Cu20.0456 (4)0.0307 (3)0.0416 (3)0.0063 (2)0.0045 (3)0.0122 (2)
O10.087 (2)0.0403 (17)0.058 (2)0.0011 (16)0.0324 (19)0.0128 (14)
O20.076 (2)0.0442 (17)0.0532 (19)0.0086 (16)0.0294 (18)0.0118 (14)
O30.0512 (19)0.0387 (16)0.0585 (19)0.0103 (14)0.0030 (16)0.0153 (14)
O40.0499 (19)0.0374 (16)0.0569 (19)0.0111 (14)0.0055 (16)0.0112 (14)
O50.059 (2)0.0422 (16)0.0555 (19)0.0028 (14)0.0215 (17)0.0150 (14)
O60.066 (2)0.0397 (16)0.0569 (19)0.0022 (15)0.0255 (17)0.0144 (14)
O70.065 (2)0.0413 (16)0.0542 (18)0.0195 (15)0.0069 (17)0.0151 (14)
O80.057 (2)0.0413 (17)0.0573 (19)0.0153 (15)0.0051 (16)0.0166 (14)
N10.035 (2)0.0307 (17)0.0353 (19)0.0036 (15)0.0090 (17)0.0041 (14)
N20.040 (2)0.0305 (17)0.046 (2)0.0077 (16)0.0092 (18)0.0083 (15)
N30.032 (2)0.0368 (18)0.0346 (19)0.0068 (15)0.0047 (17)0.0071 (15)
N40.044 (2)0.0348 (18)0.043 (2)0.0095 (16)0.0126 (18)0.0083 (15)
C10.048 (3)0.056 (3)0.052 (3)0.008 (2)0.019 (3)0.012 (2)
C20.056 (3)0.084 (4)0.060 (3)0.009 (3)0.031 (3)0.011 (3)
C30.084 (4)0.092 (4)0.077 (4)0.023 (4)0.037 (4)0.031 (3)
C40.104 (5)0.068 (4)0.095 (4)0.012 (3)0.043 (4)0.041 (3)
C50.065 (3)0.047 (3)0.099 (4)0.003 (2)0.041 (3)0.028 (3)
C60.041 (3)0.049 (2)0.044 (2)0.010 (2)0.012 (2)0.010 (2)
C70.039 (3)0.042 (2)0.057 (3)0.005 (2)0.016 (2)0.013 (2)
C80.040 (3)0.035 (2)0.046 (2)0.0035 (19)0.015 (2)0.0061 (18)
C90.032 (2)0.034 (2)0.034 (2)0.0104 (18)0.0022 (19)0.0044 (17)
C100.041 (3)0.039 (2)0.049 (3)0.005 (2)0.018 (2)0.002 (2)
C110.045 (3)0.038 (2)0.040 (2)0.007 (2)0.016 (2)0.0070 (18)
C120.040 (3)0.034 (2)0.041 (2)0.0027 (19)0.014 (2)0.0068 (18)
C130.041 (3)0.037 (2)0.049 (3)0.0156 (19)0.009 (2)0.0104 (19)
C140.037 (2)0.037 (2)0.040 (2)0.0072 (18)0.014 (2)0.0119 (18)
C150.049 (3)0.036 (2)0.042 (2)0.016 (2)0.010 (2)0.0052 (19)
C160.040 (3)0.043 (2)0.036 (2)0.013 (2)0.009 (2)0.0017 (19)
C170.041 (3)0.043 (2)0.049 (3)0.017 (2)0.006 (2)0.013 (2)
C180.040 (3)0.041 (2)0.042 (2)0.0088 (19)0.012 (2)0.0110 (19)
C190.042 (3)0.046 (2)0.038 (2)0.000 (2)0.015 (2)0.0087 (19)
C200.044 (3)0.080 (3)0.043 (3)0.013 (3)0.009 (2)0.018 (2)
C210.051 (3)0.130 (5)0.053 (3)0.028 (3)0.012 (3)0.015 (3)
C220.050 (4)0.140 (6)0.052 (3)0.021 (4)0.015 (3)0.032 (4)
C230.079 (4)0.075 (4)0.075 (4)0.025 (3)0.020 (4)0.033 (3)
C240.061 (3)0.048 (3)0.055 (3)0.008 (2)0.013 (3)0.013 (2)
C250.067 (3)0.044 (3)0.043 (3)0.012 (2)0.020 (3)0.004 (2)
C260.116 (5)0.066 (3)0.076 (4)0.001 (3)0.058 (4)0.014 (3)
C270.040 (3)0.037 (2)0.040 (2)0.001 (2)0.007 (2)0.001 (2)
C280.056 (3)0.043 (3)0.069 (3)0.008 (2)0.003 (3)0.007 (2)
C290.042 (3)0.049 (3)0.043 (3)0.005 (2)0.012 (2)0.007 (2)
C300.085 (4)0.067 (3)0.075 (3)0.004 (3)0.044 (3)0.016 (3)
C310.050 (3)0.042 (2)0.039 (3)0.013 (2)0.002 (2)0.004 (2)
C320.068 (3)0.055 (3)0.075 (3)0.032 (3)0.023 (3)0.017 (3)
Geometric parameters (Å, º) top
Cu1—O61.947 (3)C9—C121.389 (5)
Cu1—O11.956 (3)C10—C111.377 (5)
Cu1—O31.968 (3)C10—H100.9300
Cu1—O71.970 (3)C11—H110.9300
Cu1—N12.181 (3)C12—H120.9300
Cu1—Cu22.6077 (10)C13—C141.397 (5)
Cu2—O41.938 (3)C13—H130.9300
Cu2—O81.946 (3)C14—C171.452 (5)
Cu2—O21.981 (3)C15—C161.374 (5)
Cu2—O51.983 (3)C15—H150.9300
Cu2—N32.191 (3)C16—H160.9300
O1—C251.257 (4)C17—C181.319 (5)
O2—C251.252 (5)C17—H170.9300
O3—C271.252 (4)C18—C191.461 (5)
O4—C271.264 (4)C18—H180.9300
O5—C291.249 (4)C19—C201.382 (5)
O6—C291.260 (4)C19—C241.390 (5)
O7—C311.258 (4)C20—C211.370 (6)
O8—C311.257 (4)C20—H200.9300
N1—C111.323 (4)C21—C221.365 (7)
N1—C121.326 (4)C21—H210.9300
N2—C101.326 (4)C22—C231.375 (7)
N2—C91.341 (5)C22—H220.9300
N3—C161.325 (4)C23—C241.380 (6)
N3—C131.330 (4)C23—H230.9300
N4—C151.318 (5)C24—H240.9300
N4—C141.340 (4)C25—C261.489 (6)
C1—C21.367 (5)C26—H26A0.9600
C1—C61.370 (5)C26—H26B0.9600
C1—H10.9300C26—H26C0.9600
C2—C31.360 (6)C27—C281.497 (5)
C2—H20.9300C28—H28A0.9600
C3—C41.364 (7)C28—H28B0.9600
C3—H30.9300C28—H28C0.9600
C4—C51.384 (6)C29—C301.497 (6)
C4—H40.9300C30—H30A0.9600
C5—C61.394 (5)C30—H30B0.9600
C5—H50.9300C30—H30C0.9600
C6—C71.463 (5)C31—C321.490 (5)
C7—C81.329 (5)C32—H32A0.9600
C7—H70.9300C32—H32B0.9600
C8—C91.447 (5)C32—H32C0.9600
C8—H80.9300
O6—Cu1—O1172.31 (11)N1—C11—H11119.5
O6—Cu1—O389.91 (13)C10—C11—H11119.5
O1—Cu1—O389.18 (13)N1—C12—C9122.3 (4)
O6—Cu1—O789.49 (13)N1—C12—H12118.9
O1—Cu1—O789.51 (13)C9—C12—H12118.9
O3—Cu1—O7165.70 (10)N3—C13—C14122.3 (3)
O6—Cu1—N194.38 (11)N3—C13—H13118.9
O1—Cu1—N193.30 (12)C14—C13—H13118.9
O3—Cu1—N199.42 (11)N4—C14—C13119.9 (4)
O7—Cu1—N194.87 (11)N4—C14—C17118.8 (3)
O6—Cu1—Cu286.56 (8)C13—C14—C17121.3 (4)
O1—Cu1—Cu285.75 (8)N4—C15—C16123.2 (4)
O3—Cu1—Cu282.20 (8)N4—C15—H15118.4
O7—Cu1—Cu283.51 (8)C16—C15—H15118.4
N1—Cu1—Cu2178.12 (8)N3—C16—C15120.9 (4)
O4—Cu2—O8171.82 (10)N3—C16—H16119.6
O4—Cu2—O288.02 (13)C15—C16—H16119.6
O8—Cu2—O290.25 (13)C18—C17—C14124.1 (4)
O4—Cu2—O590.46 (13)C18—C17—H17117.9
O8—Cu2—O589.18 (12)C14—C17—H17117.9
O2—Cu2—O5165.24 (11)C17—C18—C19127.3 (4)
O4—Cu2—N396.07 (11)C17—C18—H18116.3
O8—Cu2—N392.10 (11)C19—C18—H18116.3
O2—Cu2—N399.50 (11)C20—C19—C24117.8 (4)
O5—Cu2—N395.27 (11)C20—C19—C18123.0 (4)
O4—Cu2—Cu186.66 (8)C24—C19—C18119.2 (4)
O8—Cu2—Cu185.19 (8)C21—C20—C19121.1 (5)
O2—Cu2—Cu182.81 (8)C21—C20—H20119.5
O5—Cu2—Cu182.44 (8)C19—C20—H20119.5
N3—Cu2—Cu1176.47 (9)C22—C21—C20120.6 (5)
C25—O1—Cu1122.3 (3)C22—C21—H21119.7
C25—O2—Cu2124.7 (3)C20—C21—H21119.7
C27—O3—Cu1125.2 (3)C21—C22—C23119.8 (5)
C27—O4—Cu2121.1 (3)C21—C22—H22120.1
C29—O5—Cu2124.3 (3)C23—C22—H22120.1
C29—O6—Cu1121.0 (3)C22—C23—C24119.7 (5)
C31—O7—Cu1123.8 (3)C22—C23—H23120.2
C31—O8—Cu2123.1 (3)C24—C23—H23120.2
C11—N1—C12117.3 (3)C23—C24—C19121.1 (5)
C11—N1—Cu1120.3 (3)C23—C24—H24119.5
C12—N1—Cu1122.4 (3)C19—C24—H24119.5
C10—N2—C9117.0 (3)O2—C25—O1124.2 (4)
C16—N3—C13116.9 (3)O2—C25—C26118.4 (4)
C16—N3—Cu2121.5 (3)O1—C25—C26117.4 (4)
C13—N3—Cu2121.4 (2)C25—C26—H26A109.5
C15—N4—C14116.8 (3)C25—C26—H26B109.5
C2—C1—C6121.5 (4)H26A—C26—H26B109.5
C2—C1—H1119.3C25—C26—H26C109.5
C6—C1—H1119.3H26A—C26—H26C109.5
C3—C2—C1121.0 (5)H26B—C26—H26C109.5
C3—C2—H2119.5O3—C27—O4124.7 (4)
C1—C2—H2119.5O3—C27—C28117.7 (3)
C2—C3—C4118.9 (5)O4—C27—C28117.6 (4)
C2—C3—H3120.5C27—C28—H28A109.5
C4—C3—H3120.5C27—C28—H28B109.5
C3—C4—C5120.8 (5)H28A—C28—H28B109.5
C3—C4—H4119.6C27—C28—H28C109.5
C5—C4—H4119.6H28A—C28—H28C109.5
C4—C5—C6120.2 (5)H28B—C28—H28C109.5
C4—C5—H5119.9O5—C29—O6125.6 (4)
C6—C5—H5119.9O5—C29—C30117.4 (4)
C1—C6—C5117.6 (4)O6—C29—C30117.1 (4)
C1—C6—C7123.8 (4)C29—C30—H30A109.5
C5—C6—C7118.6 (4)C29—C30—H30B109.5
C8—C7—C6127.2 (4)H30A—C30—H30B109.5
C8—C7—H7116.4C29—C30—H30C109.5
C6—C7—H7116.4H30A—C30—H30C109.5
C7—C8—C9124.4 (4)H30B—C30—H30C109.5
C7—C8—H8117.8O8—C31—O7124.3 (4)
C9—C8—H8117.8O8—C31—C32117.6 (4)
N2—C9—C12120.1 (4)O7—C31—C32118.1 (4)
N2—C9—C8118.7 (3)C31—C32—H32A109.5
C12—C9—C8121.3 (4)C31—C32—H32B109.5
N2—C10—C11122.5 (4)H32A—C32—H32B109.5
N2—C10—H10118.8C31—C32—H32C109.5
C11—C10—H10118.8H32A—C32—H32C109.5
N1—C11—C10120.9 (4)H32B—C32—H32C109.5
O6—Cu1—Cu2—O488.60 (13)O8—Cu2—N3—C136.8 (3)
O1—Cu1—Cu2—O491.53 (13)O2—Cu2—N3—C1397.4 (3)
O3—Cu1—Cu2—O41.78 (12)O5—Cu2—N3—C1382.6 (3)
O7—Cu1—Cu2—O4178.48 (13)C6—C1—C2—C30.3 (7)
O6—Cu1—Cu2—O892.11 (13)C1—C2—C3—C41.9 (8)
O1—Cu1—Cu2—O887.75 (13)C2—C3—C4—C52.5 (9)
O3—Cu1—Cu2—O8177.51 (13)C3—C4—C5—C61.6 (8)
O7—Cu1—Cu2—O82.24 (13)C2—C1—C6—C50.7 (6)
O6—Cu1—Cu2—O2177.02 (13)C2—C1—C6—C7179.6 (4)
O1—Cu1—Cu2—O23.11 (12)C4—C5—C6—C10.0 (7)
O3—Cu1—Cu2—O286.65 (13)C4—C5—C6—C7179.7 (4)
O7—Cu1—Cu2—O293.10 (13)C1—C6—C7—C811.0 (7)
O6—Cu1—Cu2—O52.31 (12)C5—C6—C7—C8168.7 (4)
O1—Cu1—Cu2—O5177.56 (13)C6—C7—C8—C9178.4 (3)
O3—Cu1—Cu2—O592.69 (13)C10—N2—C9—C120.9 (5)
O7—Cu1—Cu2—O587.57 (13)C10—N2—C9—C8179.1 (3)
O3—Cu1—O1—C2577.7 (3)C7—C8—C9—N22.8 (6)
O7—Cu1—O1—C2588.1 (3)C7—C8—C9—C12177.2 (4)
N1—Cu1—O1—C25177.1 (3)C9—N2—C10—C110.7 (5)
Cu2—Cu1—O1—C254.6 (3)C12—N1—C11—C100.4 (5)
O4—Cu2—O2—C2589.9 (4)Cu1—N1—C11—C10176.7 (3)
O8—Cu2—O2—C2582.1 (4)N2—C10—C11—N10.4 (6)
O5—Cu2—O2—C255.6 (7)C11—N1—C12—C90.6 (5)
N3—Cu2—O2—C25174.3 (3)Cu1—N1—C12—C9176.3 (3)
Cu1—Cu2—O2—C253.0 (3)N2—C9—C12—N10.9 (6)
O6—Cu1—O3—C2786.2 (3)C8—C9—C12—N1179.0 (3)
O1—Cu1—O3—C2786.2 (3)C16—N3—C13—C141.4 (5)
O7—Cu1—O3—C271.4 (7)Cu2—N3—C13—C14173.6 (3)
N1—Cu1—O3—C27179.4 (3)C15—N4—C14—C130.5 (5)
Cu2—Cu1—O3—C270.4 (3)C15—N4—C14—C17179.4 (3)
O2—Cu2—O4—C2779.1 (3)N3—C13—C14—N40.6 (6)
O5—Cu2—O4—C2786.2 (3)N3—C13—C14—C17178.2 (4)
N3—Cu2—O4—C27178.5 (3)C14—N4—C15—C160.8 (6)
Cu1—Cu2—O4—C273.8 (3)C13—N3—C16—C151.0 (5)
O4—Cu2—O5—C2984.6 (3)Cu2—N3—C16—C15173.9 (3)
O8—Cu2—O5—C2987.2 (3)N4—C15—C16—N30.1 (6)
O2—Cu2—O5—C290.6 (7)N4—C14—C17—C181.4 (6)
N3—Cu2—O5—C29179.3 (3)C13—C14—C17—C18179.8 (4)
Cu1—Cu2—O5—C292.0 (3)C14—C17—C18—C19179.1 (4)
O3—Cu1—O6—C2985.7 (3)C17—C18—C19—C209.0 (7)
O7—Cu1—O6—C2980.0 (3)C17—C18—C19—C24172.6 (4)
N1—Cu1—O6—C29174.9 (3)C24—C19—C20—C211.1 (7)
Cu2—Cu1—O6—C293.5 (3)C18—C19—C20—C21177.3 (4)
O6—Cu1—O7—C3188.9 (3)C19—C20—C21—C220.4 (7)
O1—Cu1—O7—C3183.5 (3)C20—C21—C22—C231.8 (8)
O3—Cu1—O7—C311.3 (7)C21—C22—C23—C241.7 (9)
N1—Cu1—O7—C31176.8 (3)C22—C23—C24—C190.2 (8)
Cu2—Cu1—O7—C312.3 (3)C20—C19—C24—C231.2 (7)
O2—Cu2—O8—C3185.9 (3)C18—C19—C24—C23177.3 (4)
O5—Cu2—O8—C3179.4 (3)Cu2—O2—C25—O10.5 (7)
N3—Cu2—O8—C31174.6 (3)Cu2—O2—C25—C26179.2 (3)
Cu1—Cu2—O8—C313.1 (3)Cu1—O1—C25—O23.8 (6)
O6—Cu1—N1—C11172.9 (3)Cu1—O1—C25—C26176.5 (3)
O1—Cu1—N1—C117.4 (3)Cu1—O3—C27—O42.5 (6)
O3—Cu1—N1—C1182.3 (3)Cu1—O3—C27—C28178.1 (3)
O7—Cu1—N1—C1197.2 (3)Cu2—O4—C27—O34.8 (6)
O6—Cu1—N1—C1210.2 (3)Cu2—O4—C27—C28175.8 (3)
O1—Cu1—N1—C12169.5 (3)Cu2—O5—C29—O60.1 (6)
O3—Cu1—N1—C12100.8 (3)Cu2—O5—C29—C30179.5 (3)
O7—Cu1—N1—C1279.7 (3)Cu1—O6—C29—O53.2 (6)
O4—Cu2—N3—C161.1 (3)Cu1—O6—C29—C30176.4 (3)
O8—Cu2—N3—C16178.5 (3)Cu2—O8—C31—O72.4 (6)
O2—Cu2—N3—C1687.9 (3)Cu2—O8—C31—C32177.3 (3)
O5—Cu2—N3—C1692.2 (3)Cu1—O7—C31—O80.7 (6)
O4—Cu2—N3—C13173.6 (3)Cu1—O7—C31—C32179.6 (3)

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C12H10N2)2]
Mr727.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.519 (4), 10.755 (4), 15.924 (6)
α, β, γ (°)80.829 (6), 71.321 (6), 74.300 (6)
V3)1637.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9491, 6662, 3702
Rint0.031
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.109, 0.99
No. of reflections6662
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

 

References

First citationBatten, S. R. (2001). CrystEngComm, 18, 1–7.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2940–2509.  Web of Science CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds