organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Phenyl­carbono­thio­ylsulfan­yl)acetic acid

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física, IFSC, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 29 August 2010; accepted 14 September 2010; online 25 September 2010)

The title compound, C9H8O2S2, can be used as a chain transfer agent and may be used to control the behavior of polymerization reactions. O—H⋯O hydrogen bonds of moderate character link the mol­ecules into dimers. In the crystal, the dimers are linked into sheets by C—H⋯O inter­actions, forming R42(12) and R22(8) edge-fused rings running parallel to [101]. There are no inter­molecular inter­actions involving the S atoms.

Related literature

For the use of dithio­carbonyl components as chain transfer agents in polymerization reactions, see: Mayadunne et al. (1999[Mayadunne, R. T. A., Rizzardo, E., Chiefari, J., Chong, Y. K., Moad, G. & Thang, S. H. (1999). Macromolecules, 1999, 32, 6977-6980.]); Davis (2004[Davis, F. J. (2004). Polymer Chemistry. New York: Oxford University Press.]). For related structures, see: Adiwidjaja & Voss (1977[Adiwidjaja, G. & Voss, J. (1977). J. Chem. Res. p. 256.]); Liang et al. (2008[Liang, Y.-R., Tong, H.-C., Lo, Y.-H., Lin, C.-H. & Kuo, T. S. (2008). Acta Cryst. E64, o2366.]). For hydrogen bonding, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Emsley (1984[Emsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147-191. Berlin: Springer-Verlag.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2S2

  • Mr = 212.29

  • Monoclinic, P 21 /c

  • a = 13.1565 (7) Å

  • b = 4.9522 (2) Å

  • c = 17.3747 (7) Å

  • β = 121.870 (3)°

  • V = 961.37 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.916

  • 5647 measured reflections

  • 2131 independent reflections

  • 1682 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.05

  • 2131 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H22⋯O1i 0.82 1.85 2.658 (2) 167
C8—H8B⋯O1ii 0.97 2.63 3.439 (3) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Controlled behavior in a polymerization reaction can be achieved with the presence of a dithiocarbonyl component, used as a chain transfer agent (CTA). These agents have the ability to react by changing the activity of a growing polymer to another molecule, producing new polymer chains (Mayadunne et al., 1999; Davis, 2004) and reducing the average molecular weight at the final polymer. Continuing research on these materials, the Polymer group of the Universidad of Valle, synthesized the 2-(phenylcarbonothioylthio) acetic acid molecule. A displacement ellipsoid plot of the title molecule with the atomic numbering scheme is shown in Figure 1. Carboxylic acids usually exist as dimeric pairs. Indeed, a hydrogen bond of moderate character (Emsley, 1984) between the O2 atom at (x,y,z) and the O1 atom at (1 - x,-y, 1 - z) in the title molecular complex is observed. The O2···O1 distance is 2.658 (3) Å and the O2—H2···O1 angle is 167.1 (2)°. The dimers of the title molecule, are linked into sheets by a weak C—H···O intermolecular interactions (Table 1)(Nardelli, 1995). Indeed, the C8 atom at (x,y,z) acts as hydrogen bond donor to carboxyl O1 atom in the molecule at (x, y + 1,z) forming R42(12) and R22(8) edge-fused rings (Etter, 1990) running parallel to the [101] direction (see Fig 2). The title compound shows a C1=S7 distance of 1.6319 (19) Å suggesting a double-bond character and C2—S7 and C2—S8 distances of 1.745 (2) and 1.786 (2) Å respectivelly, suggesting a single bond character. A dihedral angle of 12.37 (12)° between the plane formed by the atoms C8/S2/C7/S1 and the plane of benzene is observed. The behavior of these bond lengths is similar to that observed in the Methyl 4 - t-butyldithiobenzoate and methylene bis(dithiobenzoate) structures (Adiwidjaja & Voss, 1977; Liang et al., 2008). There are no intermolecular interactions from S atoms.

Related literature top

For the use of dithiocarbonyl components as chain transfer agents in polymerization reactions, see: Mayadunne et al. (1999); Davis (2004). For related structures, see: Adiwidjaja & Voss (1977); Liang et al. (2008). For hydrogen bonding, see: Etter (1990); Nardelli (1995); Emsley (1984). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Synthesis of 2-(phenylcarbonothioylthio)acetic acid: 12.56 g (0.08 mol) of bromobenzene was added dropwise to a solution of 50 ml of dry THF, 2.00 g (0.08 mol) of magnesium stirrings and a crystal of iodine. Once the reaction was finished, 6.09 g (0.08 mol) of CS2 were added and a dark violet solution was obtained after stirring for 2 h at room temperature. Then, a solution of 7.56 g (0.08 mol) of chloroacetic acid in 200 ml of water, was prepared and neutralized with 6.72 g (0.08 mol) of solid sodium bicarbonate, which was rapidly added through the condenser, the mixture was stirred, brought to boiling and left refluxing for 5 minutes. The resulting brownish red suspension was added to 500 g of cold water and the resulting solution was slowly acidified under stirring with concentrated hydrochloric acid. A deep-scarlet crystalline precipitate was collected after 30 minutes at 0°C, rinsed with water and then crystallized in chloroform obtaining a red solid (9.17 g, 54% yield).

1H (400 MHz) Solvent: CDCl3 NMR (p.p.m.) δ: 4.30 (s, 2 H, –CH2), 7.43 (t, 2H, m-ArH, J = 8 Hz) 7.59 (t, 1H, p-ArH, J = 8 Hz), 8.07 (d, 2H, o-ArH, J = 8 Hz), 9.14 (s, 1H, –OH).

IR: (KBr) 3200–2800 –COOH; 3000–2850, –CH; 1700, C=O; 1050, C=S.

Refinement top

All non-hydrogen atoms were identified by direct methods. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry. (C—H in the range 0.93–0.97 A°) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom). After this, the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R42(12) and R22(8) running parallel to the [101] direction. Symmetry code: (i)-x + 1, -y, -z + 1; (ii) x, y + 1, z.
[Figure 3] Fig. 3. The foramtion of the title compound.
2-(Phenylcarbonothioylsulfanyl)acetic acid top
Crystal data top
C9H8O2S2F(000) = 440
Mr = 212.29Dx = 1.467 Mg m3
Monoclinic, P21/cMelting point: 399(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1565 (7) ÅCell parameters from 3433 reflections
b = 4.9522 (2) Åθ = 2.9–27.5°
c = 17.3747 (7) ŵ = 0.52 mm1
β = 121.870 (3)°T = 291 K
V = 961.37 (8) Å3Prism, red
Z = 40.26 × 0.22 × 0.16 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2131 independent reflections
Radiation source: fine-focus sealed tube1682 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.063
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 56
Tmin = 0.863, Tmax = 0.916l = 2217
5647 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.0835P]
where P = (Fo2 + 2Fc2)/3
2131 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C9H8O2S2V = 961.37 (8) Å3
Mr = 212.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1565 (7) ŵ = 0.52 mm1
b = 4.9522 (2) ÅT = 291 K
c = 17.3747 (7) Å0.26 × 0.22 × 0.16 mm
β = 121.870 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2131 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1682 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.916Rint = 0.063
5647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2131 reflectionsΔρmin = 0.42 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.36260 (5)0.16659 (12)0.68630 (3)0.0659 (2)
S10.15902 (5)0.03907 (14)0.51228 (4)0.0750 (3)
O10.47853 (15)0.0386 (3)0.58577 (12)0.0719 (4)
C10.19825 (17)0.1776 (3)0.67884 (13)0.0517 (4)
O20.40702 (16)0.2866 (3)0.48242 (12)0.0784 (5)
H220.43500.19050.45970.118*
C70.23335 (16)0.0269 (4)0.62278 (13)0.0528 (4)
C60.11223 (19)0.3787 (5)0.64001 (15)0.0647 (5)
H60.07590.41630.57850.078*
C90.42419 (18)0.1733 (4)0.55576 (14)0.0576 (5)
C80.3752 (2)0.3384 (4)0.60136 (17)0.0686 (6)
H8A0.29660.40380.55540.082*
H8B0.42640.49470.62890.082*
C20.2493 (2)0.1244 (5)0.77093 (13)0.0637 (5)
H20.30630.01160.79820.076*
C50.0800 (2)0.5241 (5)0.69193 (19)0.0737 (6)
H50.02280.65990.66510.088*
C30.2166 (2)0.2708 (5)0.82243 (15)0.0722 (6)
H30.25210.23450.88390.087*
C40.1313 (2)0.4702 (5)0.78224 (19)0.0737 (6)
H40.10860.56810.81650.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0613 (4)0.0789 (4)0.0479 (3)0.0101 (2)0.0221 (3)0.0074 (2)
S10.0703 (4)0.1042 (5)0.0390 (3)0.0052 (3)0.0210 (3)0.0069 (2)
O10.0796 (10)0.0692 (9)0.0760 (11)0.0162 (8)0.0472 (9)0.0244 (7)
C10.0490 (9)0.0562 (9)0.0446 (9)0.0059 (7)0.0210 (8)0.0078 (7)
O20.0974 (12)0.0695 (9)0.0792 (11)0.0184 (8)0.0542 (10)0.0278 (8)
C70.0506 (9)0.0583 (10)0.0434 (9)0.0086 (8)0.0207 (8)0.0054 (7)
C60.0602 (11)0.0739 (12)0.0511 (11)0.0039 (10)0.0233 (9)0.0136 (9)
C90.0550 (10)0.0556 (10)0.0573 (11)0.0045 (8)0.0263 (9)0.0085 (8)
C80.0771 (14)0.0578 (11)0.0687 (13)0.0022 (10)0.0370 (12)0.0027 (9)
C20.0667 (12)0.0718 (12)0.0462 (10)0.0068 (10)0.0255 (9)0.0115 (9)
C50.0754 (14)0.0721 (13)0.0770 (16)0.0107 (11)0.0425 (13)0.0106 (11)
C30.0836 (15)0.0831 (14)0.0525 (12)0.0008 (13)0.0378 (11)0.0039 (11)
C40.0866 (15)0.0719 (13)0.0762 (16)0.0031 (11)0.0521 (14)0.0021 (11)
Geometric parameters (Å, º) top
S2—C71.745 (2)C9—C81.500 (3)
S2—C81.786 (2)C8—H8A0.9700
S1—C71.6319 (19)C8—H8B0.9700
O1—C91.221 (2)C2—C31.385 (3)
C1—C61.386 (3)C2—H20.9300
C1—C21.395 (3)C5—C41.368 (4)
C1—C71.481 (3)C5—H50.9300
O2—C91.298 (2)C3—C41.376 (4)
O2—H220.8200C3—H30.9300
C6—C51.385 (3)C4—H40.9300
C6—H60.9300
C7—S2—C8102.92 (10)S2—C8—H8A108.4
C6—C1—C2118.0 (2)C9—C8—H8B108.4
C6—C1—C7119.99 (18)S2—C8—H8B108.4
C2—C1—C7122.03 (18)H8A—C8—H8B107.5
C9—O2—H22109.5C3—C2—C1121.1 (2)
C1—C7—S1123.62 (15)C3—C2—H2119.5
C1—C7—S2113.50 (14)C1—C2—H2119.5
S1—C7—S2122.88 (12)C4—C5—C6120.7 (2)
C5—C6—C1120.6 (2)C4—C5—H5119.7
C5—C6—H6119.7C6—C5—H5119.7
C1—C6—H6119.7C4—C3—C2119.7 (2)
O1—C9—O2123.3 (2)C4—C3—H3120.1
O1—C9—C8124.10 (19)C2—C3—H3120.1
O2—C9—C8112.49 (17)C5—C4—C3119.9 (2)
C9—C8—S2115.50 (14)C5—C4—H4120.0
C9—C8—H8A108.4C3—C4—H4120.0
C6—C1—C7—S112.5 (2)O2—C9—C8—S2165.81 (16)
C2—C1—C7—S1167.52 (16)C7—S2—C8—C978.01 (18)
C6—C1—C7—S2167.49 (14)C6—C1—C2—C31.0 (3)
C2—C1—C7—S212.5 (2)C7—C1—C2—C3178.9 (2)
C8—S2—C7—C1176.11 (13)C1—C6—C5—C40.7 (4)
C8—S2—C7—S13.88 (15)C1—C2—C3—C40.8 (4)
C2—C1—C6—C51.0 (3)C6—C5—C4—C30.5 (4)
C7—C1—C6—C5178.96 (19)C2—C3—C4—C50.5 (4)
O1—C9—C8—S217.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O1i0.821.852.658 (2)167
C8—H8B···O1ii0.972.633.439 (3)141
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H8O2S2
Mr212.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.1565 (7), 4.9522 (2), 17.3747 (7)
β (°) 121.870 (3)
V3)961.37 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.26 × 0.22 × 0.16
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.863, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
5647, 2131, 1682
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.05
No. of reflections2131
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.42

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O1i0.821.852.658 (2)167.1
C8—H8B···O1ii0.972.633.439 (3)141.1
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and FZ also thank the Universidad del Valle, Colombia, and the Instituto de Física de São Carlos, USP, Brazil, for partial financial support.

References

First citationAdiwidjaja, G. & Voss, J. (1977). J. Chem. Res. p. 256.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavis, F. J. (2004). Polymer Chemistry. New York: Oxford University Press.  Google Scholar
First citationEmsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147–191. Berlin: Springer-Verlag.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiang, Y.-R., Tong, H.-C., Lo, Y.-H., Lin, C.-H. & Kuo, T. S. (2008). Acta Cryst. E64, o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayadunne, R. T. A., Rizzardo, E., Chiefari, J., Chong, Y. K., Moad, G. & Thang, S. H. (1999). Macromolecules, 1999, 32, 6977–6980.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds