metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyrimidine-κN1)aqua­(nitrato-κO)(nitrato-κ2O,O′)zinc(II)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 August 2010; accepted 14 September 2010; online 18 September 2010)

The water-coordinated Zn atom in the title monoaqua zinc nitrate adduct of 2-amino­pyrimidine, [Zn(NO3)2(C4H5N3)2(H2O)], is bonded to a monodentate nitrate ion and is chelated by the other nitrate ion. The heterocyclic ligands coordinate through ring N-donor sites. The coordination geometry about the Zn(II) atom is a distorted octa­hedron. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, adjacent adduct mol­ecules are linked by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds into a layer motif parallel to (001).

Related literature

The aqua­zinc nitrate adduct is isotypic with its Co and Ni analogs, see: Pike et al. (2006[Pike, R. D., Lim, M. J., Wilcox, E. A. L. & Tronic, T. A. (2006). J. Chem. Crystallogr. 11, 781-791.]). The copper nitrate adduct is anhydrous, see: Albada et al. (2002[Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2002). Acta Cryst. E58, m55-m57.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C4H5N3)2(H2O)]

  • Mr = 397.63

  • Monoclinic, C 2/c

  • a = 13.2742 (4) Å

  • b = 8.0142 (2) Å

  • c = 28.6204 (7) Å

  • β = 101.335 (1)°

  • V = 2985.31 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.706, Tmax = 0.822

  • 14113 measured reflections

  • 3401 independent reflections

  • 3006 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.04

  • 3401 reflections

  • 241 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.83 (1) 1.99 (2) 2.776 (2) 158 (3)
O1w—H12⋯N2ii 0.84 (1) 1.94 (1) 2.754 (2) 165 (3)
N3—H31⋯O1 0.87 (1) 2.23 (2) 2.989 (3) 146 (2)
N3—H32⋯O5iii 0.86 (1) 2.34 (2) 3.133 (3) 152 (3)
N6—H61⋯O1 0.87 (1) 2.37 (3) 3.010 (2) 131 (3)
N6—H61⋯O5 0.87 (1) 2.43 (2) 3.122 (3) 137 (3)
N6—H62⋯O1iv 0.87 (1) 2.41 (2) 3.192 (2) 150 (3)
N6—H62⋯O3iv 0.87 (1) 2.45 (2) 3.265 (3) 156 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC and Rigaku (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The cobalt, nickel and copper adducts of 2-aminopyrimidine have been reported; the first two are monoaqua complexes (Pike et al., 2006) whereas the copper complex is anhydrous (Albada et al., 2002). In the aqua complexes, one nitrate is monodentate and the other is chelating; the heterocyclic ligand coordinates through a ring donor site. The present zinc analog (Scheme I, Fig. 1) is isostructural to the cobalt and nickel adducts, whose structures have been described in detail. Adjacent molecules are linked by O–H···O and N–H···O hydrogen bonds into a layer motif (Fig. 2).

Related literature top

The aquazinc nitriate adduct is isotypic with its Co and Ni analogs; see: Pike et al. (2006). The copper nitrate adduct is anhydrous; see: Albada et al. (2002).

Experimental top

Zinc nitrate (1 mmol) and 2-aminopyrimidine (1 mmol) were dissolved in a small volume of water to give a colorless solution. Colorless prismatic crystals separated from the solution after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Zn(H2O)(NO3)2(C4H5N3)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded layer structure.
Bis(2-aminopyrimidine-κN1)aqua(nitrato-κO)(nitrato- κ2O,O')zinc(II) top
Crystal data top
[Zn(NO3)2(C4H5N3)2(H2O)]F(000) = 1616
Mr = 397.63Dx = 1.769 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11713 reflections
a = 13.2742 (4) Åθ = 3.0–27.4°
b = 8.0142 (2) ŵ = 1.70 mm1
c = 28.6204 (7) ÅT = 293 K
β = 101.335 (1)°Prism, colorless
V = 2985.31 (14) Å30.22 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.706, Tmax = 0.822l = 3437
14113 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 2.0445P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(NO3)2(C4H5N3)2(H2O)]V = 2985.31 (14) Å3
Mr = 397.63Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.2742 (4) ŵ = 1.70 mm1
b = 8.0142 (2) ÅT = 293 K
c = 28.6204 (7) Å0.22 × 0.18 × 0.12 mm
β = 101.335 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3401 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3006 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.822Rint = 0.039
14113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
3401 reflectionsΔρmin = 0.43 e Å3
241 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.498530 (14)0.66515 (3)0.616791 (7)0.02883 (9)
O10.39847 (10)0.55960 (19)0.66269 (5)0.0379 (3)
O20.28031 (17)0.4531 (3)0.60891 (6)0.0822 (7)
O30.30770 (17)0.3540 (3)0.67905 (8)0.0742 (6)
O40.46872 (15)0.4598 (2)0.55893 (9)0.0764 (7)
O50.56026 (15)0.4082 (3)0.62668 (7)0.0614 (5)
O60.5176 (2)0.2078 (2)0.57552 (7)0.0745 (6)
O1W0.62147 (10)0.7246 (2)0.58475 (5)0.0377 (3)
N10.39392 (11)0.8157 (2)0.57361 (5)0.0301 (3)
N20.24514 (12)0.9882 (2)0.55462 (6)0.0398 (4)
N30.29718 (15)0.8839 (3)0.63018 (7)0.0492 (5)
N40.55915 (12)0.8053 (2)0.67664 (5)0.0306 (3)
N50.64072 (15)0.8410 (2)0.75816 (6)0.0437 (4)
N60.60734 (16)0.5800 (2)0.72650 (7)0.0460 (4)
N70.32868 (12)0.4509 (2)0.64962 (6)0.0371 (4)
N80.51533 (15)0.3535 (2)0.58614 (8)0.0466 (4)
C10.40689 (15)0.8333 (3)0.52831 (7)0.0351 (4)
H10.46240.78050.51920.042*
C20.34156 (16)0.9258 (3)0.49524 (7)0.0415 (5)
H20.35120.93660.46410.050*
C30.26084 (16)1.0021 (3)0.51044 (7)0.0418 (5)
H30.21541.06620.48880.050*
C40.31217 (13)0.8944 (3)0.58546 (7)0.0329 (4)
C50.56075 (18)0.9717 (3)0.67104 (8)0.0447 (5)
H50.53351.01690.64130.054*
C60.6010 (2)1.0766 (3)0.70754 (10)0.0586 (6)
H60.60241.19160.70330.070*
C70.63959 (19)1.0039 (3)0.75104 (8)0.0534 (6)
H70.66611.07290.77660.064*
C80.60164 (13)0.7461 (3)0.72035 (6)0.0317 (4)
H110.6657 (17)0.789 (3)0.5994 (9)0.061 (8)*
H120.653 (2)0.640 (2)0.5780 (11)0.067 (9)*
H310.3355 (18)0.817 (3)0.6501 (8)0.053 (8)*
H320.2393 (12)0.920 (3)0.6356 (10)0.057 (8)*
H610.567 (2)0.515 (3)0.7066 (9)0.074 (9)*
H620.624 (2)0.548 (4)0.7560 (5)0.071 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02802 (13)0.03286 (14)0.02437 (13)0.00355 (8)0.00208 (8)0.00019 (8)
O10.0338 (7)0.0452 (8)0.0339 (7)0.0098 (6)0.0044 (5)0.0037 (6)
O20.0895 (14)0.1073 (18)0.0386 (9)0.0538 (13)0.0145 (9)0.0059 (10)
O30.0787 (14)0.0756 (14)0.0671 (13)0.0275 (10)0.0110 (11)0.0237 (10)
O40.0554 (10)0.0468 (10)0.1130 (18)0.0005 (8)0.0180 (11)0.0186 (11)
O50.0691 (11)0.0716 (12)0.0484 (10)0.0027 (9)0.0233 (8)0.0121 (9)
O60.1327 (19)0.0331 (9)0.0651 (12)0.0095 (10)0.0380 (12)0.0043 (9)
O1W0.0294 (7)0.0403 (8)0.0446 (8)0.0014 (6)0.0102 (6)0.0080 (7)
N10.0258 (7)0.0392 (9)0.0245 (7)0.0043 (6)0.0032 (6)0.0006 (6)
N20.0365 (8)0.0476 (10)0.0336 (8)0.0150 (7)0.0028 (7)0.0005 (7)
N30.0460 (10)0.0729 (13)0.0310 (9)0.0265 (10)0.0133 (8)0.0088 (9)
N40.0319 (7)0.0340 (8)0.0257 (7)0.0031 (6)0.0051 (6)0.0003 (6)
N50.0488 (10)0.0522 (11)0.0279 (8)0.0134 (8)0.0022 (7)0.0063 (7)
N60.0556 (11)0.0426 (10)0.0327 (9)0.0036 (8)0.0089 (8)0.0065 (8)
N70.0328 (8)0.0439 (9)0.0345 (8)0.0068 (7)0.0066 (6)0.0001 (7)
N80.0512 (11)0.0366 (10)0.0561 (12)0.0037 (8)0.0210 (9)0.0023 (8)
C10.0344 (9)0.0444 (11)0.0272 (9)0.0067 (8)0.0075 (7)0.0022 (7)
C20.0451 (11)0.0533 (13)0.0256 (9)0.0084 (9)0.0056 (8)0.0066 (9)
C30.0412 (10)0.0475 (12)0.0330 (10)0.0103 (9)0.0018 (8)0.0042 (9)
C40.0296 (9)0.0401 (10)0.0281 (9)0.0053 (7)0.0030 (7)0.0011 (7)
C50.0589 (13)0.0350 (11)0.0386 (11)0.0020 (9)0.0055 (9)0.0039 (9)
C60.0835 (18)0.0343 (12)0.0553 (14)0.0100 (11)0.0072 (13)0.0061 (10)
C70.0634 (14)0.0536 (14)0.0417 (12)0.0178 (12)0.0068 (10)0.0162 (11)
C80.0287 (8)0.0404 (11)0.0252 (8)0.0058 (7)0.0035 (7)0.0001 (7)
Geometric parameters (Å, º) top
Zn1—N12.0583 (15)N3—H310.869 (10)
Zn1—N42.0740 (16)N3—H320.864 (10)
Zn1—O1W2.0782 (14)N4—C51.343 (3)
Zn1—O52.214 (2)N4—C81.353 (2)
Zn1—O12.2117 (14)N5—C71.320 (3)
Zn1—O42.313 (2)N5—C81.341 (2)
O1—N71.273 (2)N6—C81.342 (3)
O2—N71.215 (2)N6—H610.871 (10)
O3—N71.218 (3)N6—H620.869 (10)
O4—N81.235 (3)C1—C21.369 (3)
O5—N81.274 (3)C1—H10.9300
O6—N81.209 (2)C2—C31.376 (3)
O1W—H110.831 (10)C2—H20.9300
O1W—H120.840 (10)C3—H30.9300
N1—C11.348 (2)C5—C61.366 (3)
N1—C41.355 (2)C5—H50.9300
N2—C31.326 (3)C6—C71.379 (4)
N2—C41.351 (2)C6—H60.9300
N3—C41.336 (3)C7—H70.9300
N1—Zn1—N4106.55 (6)C8—N6—H62115 (2)
N1—Zn1—O1W95.52 (6)H61—N6—H62118 (3)
N4—Zn1—O1W91.68 (6)O3—N7—O2121.54 (19)
N1—Zn1—O5144.20 (7)O3—N7—O1119.02 (18)
N4—Zn1—O5108.93 (7)O2—N7—O1119.28 (18)
O1W—Zn1—O588.09 (6)O6—N8—O4122.8 (2)
N1—Zn1—O199.66 (6)O6—N8—O5122.1 (2)
N4—Zn1—O184.11 (6)O4—N8—O5115.1 (2)
O1W—Zn1—O1164.82 (6)N1—C1—C2122.55 (18)
O5—Zn1—O179.56 (6)N1—C1—H1118.7
N1—Zn1—O489.25 (6)C2—C1—H1118.7
N4—Zn1—O4163.88 (6)C1—C2—C3116.67 (19)
O1W—Zn1—O483.45 (7)C1—C2—H2121.7
O5—Zn1—O455.71 (7)C3—C2—H2121.7
O1—Zn1—O496.60 (7)N2—C3—C2122.81 (18)
N7—O1—Zn1125.05 (12)N2—C3—H3118.6
N8—O4—Zn192.60 (16)C2—C3—H3118.6
N8—O5—Zn196.21 (14)N3—C4—N2117.25 (17)
Zn1—O1W—H11117 (2)N3—C4—N1119.20 (17)
Zn1—O1W—H12113 (2)N2—C4—N1123.53 (17)
H11—O1W—H12106 (3)N4—C5—C6122.2 (2)
C1—N1—C4116.87 (16)N4—C5—H5118.9
C1—N1—Zn1116.11 (12)C6—C5—H5118.9
C4—N1—Zn1126.99 (13)C5—C6—C7116.8 (2)
C3—N2—C4117.57 (17)C5—C6—H6121.6
C4—N3—H31119.3 (18)C7—C6—H6121.6
C4—N3—H32117.1 (19)N5—C7—C6123.2 (2)
H31—N3—H32121 (3)N5—C7—H7118.4
C5—N4—C8116.43 (17)C6—C7—H7118.4
C5—N4—Zn1116.84 (13)N6—C8—N5117.00 (17)
C8—N4—Zn1126.66 (13)N6—C8—N4118.12 (17)
C7—N5—C8116.47 (19)N5—C8—N4124.86 (19)
C8—N6—H61120 (2)
N1—Zn1—O1—N772.86 (16)O5—Zn1—N4—C819.60 (17)
N4—Zn1—O1—N7178.70 (16)O1—Zn1—N4—C857.21 (15)
O1W—Zn1—O1—N7106.8 (2)O4—Zn1—N4—C836.2 (3)
O5—Zn1—O1—N770.77 (15)Zn1—O1—N7—O3150.33 (18)
O4—Zn1—O1—N717.50 (16)Zn1—O1—N7—O234.3 (3)
N1—Zn1—O4—N8168.46 (15)Zn1—O4—N8—O6173.3 (2)
N4—Zn1—O4—N822.8 (4)Zn1—O4—N8—O55.9 (2)
O1W—Zn1—O4—N895.89 (15)Zn1—O5—N8—O6173.0 (2)
O5—Zn1—O4—N83.73 (13)Zn1—O5—N8—O46.2 (2)
O1—Zn1—O4—N868.82 (15)C4—N1—C1—C20.0 (3)
N1—Zn1—O5—N89.79 (19)Zn1—N1—C1—C2178.16 (17)
N4—Zn1—O5—N8178.14 (12)N1—C1—C2—C30.3 (3)
O1W—Zn1—O5—N887.01 (13)C4—N2—C3—C20.0 (3)
O1—Zn1—O5—N8101.86 (13)C1—C2—C3—N20.3 (4)
O4—Zn1—O5—N83.63 (13)C3—N2—C4—N3178.6 (2)
N4—Zn1—N1—C1126.33 (14)C3—N2—C4—N10.4 (3)
O1W—Zn1—N1—C132.92 (15)C1—N1—C4—N3178.6 (2)
O5—Zn1—N1—C161.49 (19)Zn1—N1—C4—N33.6 (3)
O1—Zn1—N1—C1147.00 (14)C1—N1—C4—N20.4 (3)
O4—Zn1—N1—C150.43 (15)Zn1—N1—C4—N2178.24 (15)
N4—Zn1—N1—C455.78 (17)C8—N4—C5—C61.3 (3)
O1W—Zn1—N1—C4149.19 (16)Zn1—N4—C5—C6178.4 (2)
O5—Zn1—N1—C4116.40 (17)N4—C5—C6—C70.6 (4)
O1—Zn1—N1—C430.90 (17)C8—N5—C7—C60.1 (4)
O4—Zn1—N1—C4127.46 (17)C5—C6—C7—N51.3 (4)
N1—Zn1—N4—C527.69 (17)C7—N5—C8—N6176.5 (2)
O1W—Zn1—N4—C568.58 (16)C7—N5—C8—N42.1 (3)
O5—Zn1—N4—C5157.14 (15)C5—N4—C8—N6175.85 (19)
O1—Zn1—N4—C5126.05 (16)Zn1—N4—C8—N60.9 (3)
O4—Zn1—N4—C5140.6 (3)C5—N4—C8—N52.8 (3)
N1—Zn1—N4—C8155.57 (14)Zn1—N4—C8—N5179.52 (15)
O1W—Zn1—N4—C8108.16 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.83 (1)1.99 (2)2.776 (2)158 (3)
O1w—H12···N2ii0.84 (1)1.94 (1)2.754 (2)165 (3)
N3—H31···O10.87 (1)2.23 (2)2.989 (3)146 (2)
N3—H32···O5iii0.86 (1)2.34 (2)3.133 (3)152 (3)
N6—H61···O10.87 (1)2.37 (3)3.010 (2)131 (3)
N6—H61···O50.87 (1)2.43 (2)3.122 (3)137 (3)
N6—H62···O1iv0.87 (1)2.41 (2)3.192 (2)150 (3)
N6—H62···O3iv0.87 (1)2.45 (2)3.265 (3)156 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C4H5N3)2(H2O)]
Mr397.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.2742 (4), 8.0142 (2), 28.6204 (7)
β (°) 101.335 (1)
V3)2985.31 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.706, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
14113, 3401, 3006
Rint0.039
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.04
No. of reflections3401
No. of parameters241
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.83 (1)1.99 (2)2.776 (2)158 (3)
O1w—H12···N2ii0.84 (1)1.94 (1)2.754 (2)165 (3)
N3—H31···O10.87 (1)2.23 (2)2.989 (3)146 (2)
N3—H32···O5iii0.86 (1)2.34 (2)3.133 (3)152 (3)
N6—H61···O10.87 (1)2.37 (3)3.010 (2)131 (3)
N6—H61···O50.87 (1)2.43 (2)3.122 (3)137 (3)
N6—H62···O1iv0.87 (1)2.41 (2)3.192 (2)150 (3)
N6—H62···O3iv0.87 (1)2.45 (2)3.265 (3)156 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y, z+3/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationAlbada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2002). Acta Cryst. E58, m55–m57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPike, R. D., Lim, M. J., Wilcox, E. A. L. & Tronic, T. A. (2006). J. Chem. Crystallogr. 11, 781–791.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds