organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Dioxoisoindolin-2-yl)aceto­nitrile

aLaboratoire de Chimie Organique, Faculté des Sciences, Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoires de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: alamianouar@yahoo.fr

(Received 8 September 2010; accepted 17 September 2010; online 25 September 2010)

The asymmetric unit of the title compound, C10H6N2O2, contains two independent mol­ecules. The dihedral angles between the acetonitrile and the 1H-isoindole-1,3(2H)-dione units are 69.0 (7)° and 77.0 (5)° in the two mol­ecules. One of the two terminal N atoms is disordered over two positions in a 0.66 (8):0,34 (8) ratio. In the crystal structure, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds.

Related literature

The title compound was prepared as a key intermediate for the synthesis of a new new tetrazolic derivative. For the use of tetra­zoles as pesticides, see: Schocken et al. (1989[Schocken, M. J., Creekmore, R. W., Theodoridis, G., Nystrom, G. J. & Robinson, R. A. (1989). Appl. Environ. Microbiol. 55, 1220-2122.]); Yanagi et al. (2001[Yanagi, A. (2001). Pflanzenschutz Nachr. Bayer. 54, 1-11.]); Lim et al. (2007[Lim, S. J., Sunohara, Y. & Matsumoto, H. (2007). J. Pestic. Sci. 32, 249-254.]) and as anti­hypertensive, anti­alergic, anti­biotic and anti­convulsant agents, see: Hashimoto et al. (1998[Hashimoto, Y., Ohashi, R., Kurosawa, Y., Minami, K., Kaji, H., Hayashida, K., Narita, H. & Murata, S. (1998). J. Cardiovasc. Pharm. 31, 568-575.]); Berghmans et al. (2007[Berghmans, S., Hunt, J., Roach, A. & Goldsmith, P. (2007). Epilepsy Res. 75, 18-28.]). For their use in cancer, AIDS and obesity treatments, see: Tamura et al. (1998[Tamura, Y. F., Watanabe, F., Nakatani, T., Yasui, K., Fuji, M., Komurasaki, T., Tsuzuki, H., Maekawa, R., Yoshioka, T., Kawada, K., Sugita, K. & Ohtani, M. (1998). J. Med. Chem. 41, 640-649.]); Shih et al. (1999[Shih, T. L., Candelore, M. R., Cascieri, M. A., Chiu, S.-H. L., Colwell, L. F. Jr, Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Miller, R. R., Stearns, R. A., Strader, C. D., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (1999). Bioorg. Med. Chem. Lett. 9, 1251-1254.]); Muraglia et al. (2006[Muraglia, E., Kinzel, O. D., Laufer, R., Miller, M. D., Moyer, G., Munshi, V., Orvieto, F., Palumbi, M. C., Pescatore, G., Rowley, M., Williams, P. D. & Summa, V. (2006). Bioorg. Med. Chem. Lett. 16, 2748-2752.]). A major advantage of tetra­zoles over carb­oxy­lic acids is that they are resistant to many biological metabolic degradation pathways, see: Singh et al. (1980[Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151-183.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N2O2

  • Mr = 186.17

  • Triclinic, [P \overline 1]

  • a = 8.0960 (2) Å

  • b = 8.4371 (2) Å

  • c = 14.3118 (3) Å

  • α = 85.072 (1)°

  • β = 79.272 (1)°

  • γ = 68.421 (1)°

  • V = 893.02 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.16 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 18332 measured reflections

  • 3906 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.05

  • 3906 reflections

  • 267 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O12i 0.93 2.51 3.386 (2) 158
C15—H15⋯O20ii 0.93 2.45 3.144 (2) 132
C18—H18B⋯O20 0.97 2.42 3.372 (2) 167
C28—H28A⋯O21iii 0.97 2.39 3.298 (2) 156
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

With the aim of developing new tetrazolic derived, an analog isosteric of the glycine, we have prepared 2-(1,3-dioxoisoindolin-2-yl)acetonitrile,a key intermediate, starting from 2-(bromomethyl)isoindoline-1,3-dione.

The asymmetric unit of the new synthetized 2-(1,3-dioxoisoindolin-2-yl)acetonitrile, C10H6N2O2, contains two independent molecules. The dihedral angles between the acetonitrile and the 1H-isoindole-1,3(2H)-dione are 69.0 (7)° and 77.0 (5)°, respictively.

One of the two terminal N is disordered over two positions with occupancy of 0.66 (8) for the major site. In the crystal structure, the molecules are linked by intermolecular C—H···O hydrogen bonds.

Related literature top

For the use of tetrazoles as pesticides, see: Schocken et al. (1989); Yanagi et al. (2001); Lim et al. (2007) and as antihypertensive, antialergic, antibiotic and anticonvulsant agents, see: Hashimoto et al. (1998); Berghmans et al. (2007). For their use in cancer, AIDS and obesity treatments, see: Tamura et al. (1998); Shih et al. (1999); Muraglia et al. (2006). A major advantage of tetrazoles over carboxylic acids is that they are resistant to many biological metabolic degradation pathways, see: Singh et al. (1980).

Experimental top

A mixture containing 4.8 g (0.02 mol) of 2-(bromomethyl)isoindoline-1,3-dione, 6.5 g KCN (0.1 mol), and 60 ml of anhydrous acetonitrile is heated overnight at 60°C, and then filtered. The residue is washed twice with acetonitrile, and the filtrate was concentrated under vacuum. The solid obtained is purified by chromatography on silica gel column (eluent: ether / hexane: 2 / 3).

Yield= 80% (white solid); F= 122–124°C; Rf = 0.31(ether/hexane3:1).

IR (KBr) ν cm-1: 3070(CHarom),2947/2983 (CH), 1692/1709 (2 C=O), 1557/1613 (C=C). δH (CDCl3): 4.57 (2HCH2,s); 7.60–8.10 (4Harom, m). δC (CDCl3): 28.1(CH2);115.01(CN); 127.5; 132.1; 133.3(Carom); 168.28(2 C=O).

MS—EI: [M]+=186.

Elemental analysis for C10H6N2O2 Calcd(Found):C 64.51(64.62), H 3.22(3.31), N 15.02(14.94).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with Uiso(H) = 1.2Ueq(C).

One of the terminals N was found disordered over. Two sets of positions were defined for the disordered N and the site occupation factors were refined while restraining their sum to unity. The site occupation factor of the major component was refined to 0.66 (8).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids. Only major parts of disordered N are shown.
[Figure 2] Fig. 2. Partial packing view showing the formation of a chain through C—H···O hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. View of the title compound showing displacement ellipsoids at the 50% probability level.
2-(1,3-Dioxoisoindolin-2-yl)acetonitrile top
Crystal data top
C10H6N2O2Z = 4
Mr = 186.17F(000) = 384
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Melting point: 395 K
a = 8.0960 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4371 (2) ÅCell parameters from 2714 reflections
c = 14.3118 (3) Åθ = 2.7–25.3°
α = 85.072 (1)°µ = 0.10 mm1
β = 79.272 (1)°T = 296 K
γ = 68.421 (1)°Block, colourless
V = 893.02 (4) Å30.25 × 0.24 × 0.16 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
2885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.0°, θmin = 1.5°
ω and ϕ scansh = 1010
18332 measured reflectionsk = 1010
3906 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.070P]
where P = (Fo2 + 2Fc2)/3
3906 reflections(Δ/σ)max = 0.005
267 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H6N2O2γ = 68.421 (1)°
Mr = 186.17V = 893.02 (4) Å3
Triclinic, P1Z = 4
a = 8.0960 (2) ÅMo Kα radiation
b = 8.4371 (2) ŵ = 0.10 mm1
c = 14.3118 (3) ÅT = 296 K
α = 85.072 (1)°0.25 × 0.24 × 0.16 mm
β = 79.272 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
2885 reflections with I > 2σ(I)
18332 measured reflectionsRint = 0.034
3906 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3906 reflectionsΔρmin = 0.20 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.73565 (18)0.39842 (17)0.04371 (10)0.0471 (3)
C160.75085 (18)0.49910 (17)0.03635 (10)0.0461 (3)
C100.7395 (2)0.48752 (18)0.12747 (11)0.0497 (3)
C170.7711 (2)0.65409 (18)0.00671 (11)0.0527 (4)
C180.7772 (2)0.76260 (19)0.15037 (12)0.0582 (4)
H18A0.83600.83270.11120.070*
H18B0.85030.70490.19840.070*
C150.7474 (2)0.4505 (2)0.12523 (12)0.0612 (4)
H150.75590.51950.17880.073*
C140.7309 (2)0.2948 (2)0.13128 (13)0.0685 (5)
H140.72910.25770.19030.082*
C190.5995 (3)0.8711 (2)0.19668 (15)0.0745 (5)
C120.7182 (3)0.2438 (2)0.03696 (14)0.0670 (5)
H120.70750.17540.09060.080*
C130.7170 (3)0.1937 (2)0.05234 (15)0.0750 (5)
H130.70650.08930.05890.090*
C200.91639 (18)0.46404 (18)0.38170 (10)0.0462 (3)
C260.72827 (18)0.4498 (2)0.52338 (10)0.0495 (3)
C210.78905 (18)0.56105 (19)0.46334 (10)0.0472 (3)
C270.81143 (19)0.2782 (2)0.48113 (11)0.0512 (4)
C281.0390 (2)0.1584 (2)0.33559 (12)0.0598 (4)
H28A1.12020.07410.37270.072*
H28B1.11140.20150.28570.072*
C220.7336 (2)0.7317 (2)0.48390 (12)0.0600 (4)
H220.77400.80680.44330.072*
C290.9423 (2)0.0764 (2)0.29222 (14)0.0661 (5)
C230.6146 (2)0.7856 (2)0.56814 (14)0.0715 (5)
H230.57440.89960.58430.086*
C250.6098 (2)0.5045 (3)0.60702 (12)0.0640 (4)
H250.56860.42970.64750.077*
C240.5549 (2)0.6749 (3)0.62815 (13)0.0725 (5)
H240.47580.71540.68420.087*
O110.72249 (19)0.44907 (16)0.21083 (8)0.0739 (4)
O120.7926 (2)0.77161 (16)0.05386 (10)0.0863 (4)
O201.00395 (15)0.51155 (14)0.31593 (8)0.0613 (3)
O210.79522 (16)0.14499 (15)0.50949 (9)0.0727 (4)
N110.76467 (16)0.63694 (14)0.09160 (9)0.0497 (3)
N210.92041 (16)0.29721 (15)0.39635 (8)0.0494 (3)
N220.8731 (3)0.0080 (2)0.25846 (16)0.1020 (7)
N12A0.4599 (15)0.972 (4)0.222 (2)0.100 (4)0.66 (8)
N12B0.466 (4)0.916 (6)0.252 (3)0.085 (6)0.34 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0471 (8)0.0391 (7)0.0555 (8)0.0166 (6)0.0054 (6)0.0037 (6)
C160.0411 (7)0.0434 (7)0.0506 (8)0.0148 (6)0.0017 (6)0.0064 (6)
C100.0539 (8)0.0439 (8)0.0529 (9)0.0215 (6)0.0049 (6)0.0009 (6)
C170.0550 (8)0.0447 (8)0.0597 (9)0.0227 (7)0.0037 (7)0.0018 (7)
C180.0611 (9)0.0469 (8)0.0728 (10)0.0233 (7)0.0141 (8)0.0108 (7)
C150.0567 (9)0.0693 (10)0.0519 (9)0.0200 (8)0.0035 (7)0.0102 (8)
C140.0631 (10)0.0669 (11)0.0705 (11)0.0135 (8)0.0062 (8)0.0307 (9)
C190.0700 (12)0.0728 (12)0.0872 (14)0.0258 (10)0.0134 (10)0.0353 (10)
C120.0875 (12)0.0422 (8)0.0784 (12)0.0294 (8)0.0189 (9)0.0008 (8)
C130.0835 (12)0.0453 (9)0.1006 (15)0.0209 (9)0.0214 (11)0.0213 (9)
C200.0446 (7)0.0517 (8)0.0462 (8)0.0201 (6)0.0124 (6)0.0007 (6)
C260.0418 (7)0.0632 (9)0.0449 (8)0.0185 (7)0.0123 (6)0.0011 (7)
C210.0432 (7)0.0540 (8)0.0462 (8)0.0167 (6)0.0127 (6)0.0035 (6)
C270.0455 (8)0.0578 (9)0.0532 (8)0.0209 (7)0.0143 (6)0.0073 (7)
C280.0518 (9)0.0554 (9)0.0701 (10)0.0151 (7)0.0088 (8)0.0125 (8)
C220.0573 (9)0.0558 (9)0.0674 (10)0.0164 (7)0.0166 (8)0.0072 (8)
C290.0628 (10)0.0485 (9)0.0830 (12)0.0116 (8)0.0123 (9)0.0185 (8)
C230.0590 (10)0.0699 (11)0.0766 (12)0.0041 (8)0.0181 (9)0.0257 (10)
C250.0492 (9)0.0898 (13)0.0496 (9)0.0219 (8)0.0069 (7)0.0001 (8)
C240.0517 (9)0.0973 (15)0.0572 (10)0.0114 (9)0.0049 (8)0.0202 (10)
O110.1064 (10)0.0764 (8)0.0524 (7)0.0494 (8)0.0150 (6)0.0068 (6)
O120.1289 (12)0.0668 (8)0.0810 (9)0.0601 (8)0.0181 (8)0.0195 (7)
O200.0651 (7)0.0686 (7)0.0530 (6)0.0320 (6)0.0011 (5)0.0014 (5)
O210.0695 (7)0.0627 (7)0.0869 (9)0.0291 (6)0.0133 (6)0.0184 (6)
N110.0584 (7)0.0396 (6)0.0556 (7)0.0229 (5)0.0072 (6)0.0052 (5)
N210.0499 (7)0.0496 (7)0.0498 (7)0.0186 (5)0.0072 (5)0.0065 (5)
N220.0928 (13)0.0766 (11)0.1438 (18)0.0253 (10)0.0265 (12)0.0498 (12)
N12A0.078 (2)0.098 (7)0.114 (8)0.013 (4)0.013 (4)0.048 (7)
N12B0.079 (5)0.081 (10)0.088 (10)0.020 (6)0.005 (5)0.040 (7)
Geometric parameters (Å, º) top
C11—C121.376 (2)C20—N211.3944 (18)
C11—C161.381 (2)C20—C211.481 (2)
C11—C101.480 (2)C26—C211.380 (2)
C16—C151.378 (2)C26—C251.381 (2)
C16—C171.482 (2)C26—C271.482 (2)
C10—O111.2052 (18)C21—C221.382 (2)
C10—N111.3903 (18)C27—O211.2066 (17)
C17—O121.1989 (18)C27—N211.3958 (19)
C17—N111.395 (2)C28—N211.4445 (19)
C18—N111.4511 (18)C28—C291.460 (2)
C18—C191.458 (2)C28—H28A0.9700
C18—H18A0.9700C28—H28B0.9700
C18—H18B0.9700C22—C231.388 (2)
C15—C141.380 (2)C22—H220.9300
C15—H150.9300C29—N221.125 (2)
C14—C131.369 (3)C23—C241.372 (3)
C14—H140.9300C23—H230.9300
C12—C131.383 (3)C25—C241.383 (3)
C12—H120.9300C25—H250.9300
C13—H130.9300C24—H240.9300
C20—O201.2021 (17)
C12—C11—C16120.65 (14)C21—C26—C27108.31 (13)
C12—C11—C10130.71 (15)C25—C26—C27130.42 (15)
C16—C11—C10108.64 (12)C26—C21—C22121.60 (14)
C15—C16—C11121.80 (13)C26—C21—C20108.40 (13)
C15—C16—C17130.20 (14)C22—C21—C20129.99 (14)
C11—C16—C17108.00 (13)O21—C27—N21124.00 (15)
O11—C10—N11123.96 (14)O21—C27—C26130.39 (15)
O11—C10—C11130.57 (14)N21—C27—C26105.61 (12)
N11—C10—C11105.46 (12)N21—C28—C29112.91 (13)
O12—C17—N11124.60 (15)N21—C28—H28A109.0
O12—C17—C16129.75 (15)C29—C28—H28A109.0
N11—C17—C16105.63 (12)N21—C28—H28B109.0
N11—C18—C19111.30 (13)C29—C28—H28B109.0
N11—C18—H18A109.4H28A—C28—H28B107.8
C19—C18—H18A109.4C21—C22—C23116.75 (17)
N11—C18—H18B109.4C21—C22—H22121.6
C19—C18—H18B109.4C23—C22—H22121.6
H18A—C18—H18B108.0N22—C29—C28177.51 (18)
C16—C15—C14117.07 (16)C24—C23—C22121.71 (17)
C16—C15—H15121.5C24—C23—H23119.1
C14—C15—H15121.5C22—C23—H23119.1
C13—C14—C15121.47 (16)C26—C25—C24117.30 (17)
C13—C14—H14119.3C26—C25—H25121.4
C15—C14—H14119.3C24—C25—H25121.4
C11—C12—C13117.66 (16)C23—C24—C25121.36 (16)
C11—C12—H12121.2C23—C24—H24119.3
C13—C12—H12121.2C25—C24—H24119.3
C14—C13—C12121.34 (16)C10—N11—C17112.21 (12)
C14—C13—H13119.3C10—N11—C18123.66 (13)
C12—C13—H13119.3C17—N11—C18124.11 (12)
O20—C20—N21124.84 (14)C20—N21—C27112.00 (12)
O20—C20—C21129.50 (14)C20—N21—C28123.18 (12)
N21—C20—C21105.65 (12)C27—N21—C28124.49 (13)
C21—C26—C25121.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O12i0.932.513.386 (2)158
C15—H15···O20ii0.932.453.144 (2)132
C18—H18B···O200.972.423.372 (2)167
C28—H28A···O21iii0.972.393.298 (2)156
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H6N2O2
Mr186.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0960 (2), 8.4371 (2), 14.3118 (3)
α, β, γ (°)85.072 (1), 79.272 (1), 68.421 (1)
V3)893.02 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.24 × 0.16
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18332, 3906, 2885
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.05
No. of reflections3906
No. of parameters267
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O12i0.932.513.386 (2)158
C15—H15···O20ii0.932.453.144 (2)132
C18—H18B···O200.972.423.372 (2)167
C28—H28A···O21iii0.972.393.298 (2)156
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+2, y, z+1.
 

Acknowledgements

The authors thank the CNRST, Morocco, for making this work possible.

References

First citationBerghmans, S., Hunt, J., Roach, A. & Goldsmith, P. (2007). Epilepsy Res. 75, 18–28.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashimoto, Y., Ohashi, R., Kurosawa, Y., Minami, K., Kaji, H., Hayashida, K., Narita, H. & Murata, S. (1998). J. Cardiovasc. Pharm. 31, 568–575.  Web of Science CrossRef CAS Google Scholar
First citationLim, S. J., Sunohara, Y. & Matsumoto, H. (2007). J. Pestic. Sci. 32, 249–254.  Web of Science CrossRef CAS Google Scholar
First citationMuraglia, E., Kinzel, O. D., Laufer, R., Miller, M. D., Moyer, G., Munshi, V., Orvieto, F., Palumbi, M. C., Pescatore, G., Rowley, M., Williams, P. D. & Summa, V. (2006). Bioorg. Med. Chem. Lett. 16, 2748–2752.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchocken, M. J., Creekmore, R. W., Theodoridis, G., Nystrom, G. J. & Robinson, R. A. (1989). Appl. Environ. Microbiol. 55, 1220–2122.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, T. L., Candelore, M. R., Cascieri, M. A., Chiu, S.-H. L., Colwell, L. F. Jr, Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Miller, R. R., Stearns, R. A., Strader, C. D., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (1999). Bioorg. Med. Chem. Lett. 9, 1251–1254.  Web of Science CrossRef PubMed Google Scholar
First citationSingh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151–183.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamura, Y. F., Watanabe, F., Nakatani, T., Yasui, K., Fuji, M., Komurasaki, T., Tsuzuki, H., Maekawa, R., Yoshioka, T., Kawada, K., Sugita, K. & Ohtani, M. (1998). J. Med. Chem. 41, 640–649.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanagi, A. (2001). Pflanzenschutz Nachr. Bayer. 54, 1–11.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds