organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,2,2′-Tetra­methyl-3,3′-(p-phenyl­ene­di­methyl­ene)diimidazol-1-ium bis­­[bis­­(tri­fluoro­methyl­sulfon­yl)imide]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 September 2010; accepted 22 September 2010; online 30 September 2010)

The cation of the imidazolium-based ionic-liquid title salt, C16H24N42+·2C2F6NO4S2, lies on a center of inversion; in the cation, the five-membered imidazolium ring is aligned at 84.4 (1)° with respect to the phenyl­ene ring; the angle at the methyl­ene C atom is 113.0 (2)°. In the anion, the negative charge formally resides on the two-coordinate N atom; the S—N—S angle at this atom is 125.2 (1)°.

Related literature

For the tetra­fluoro­borate and hexa­fluoro­phosphate salts, see: Puvaneswary et al. (2009a[Puvaneswary, S., Alias, Y. & Ng, S. W. (2009a). Acta Cryst. E65, o1829.],b[Puvaneswary, S., Alias, Y. & Ng, S. W. (2009b). Acta Cryst. E65, o1830.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N42+·2C2F6NO4S2

  • Mr = 856.71

  • Monoclinic, P 21 /n

  • a = 8.7195 (7) Å

  • b = 13.710 (1) Å

  • c = 13.8351 (11) Å

  • β = 92.290 (1)°

  • V = 1652.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.922

  • 10192 measured reflections

  • 3744 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.02

  • 3744 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously reported 1,1',2,2'-tetramethyl-3,3'-(p-phenylenedimethylene)-bis(imidazol-1-ium) salts (Puvaneswary et al., 2009a, 2009b). Such compounds are ionic-liquid salts based on an imidazolium entity. The principal feauture of these salts is the non-nucleophilic nature of the counterion. The present bis(trifluoromethanesulfonyl)imide salt (Scheme I, Fig. 1) represents another example of such an anion. The cation lies on a center-of-inversion. The five-membered limidazolyl ring is aligned at with respect to the phenylene ring 84.4 (1) °; the angle at the methylene carbon is 113.0 (2) °. In the anion, the negative charge formally resides on the two-coordinate nitrogen; the angle at this atom is 125.2 (1) °.

Related literature top

For the tetrafluoroborate and hexafluorophosphate salts, see: Puvaneswary et al. (2009a,b).

Experimental top

1,1',2,2'-Tetramethyl-3,3'-(p-phenylenedimethylene)-bis(imidazol-1-ium) bromide (1 mmol) and lithium bis(trifluoromethanesulfonyl)imide (2 mmol) were mixed in water for 2 h to give a solid material. This was collected and recrystallized from ethyl acetate

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C16H24N42+ 2C2F6NO4S2- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.
1,1',2,2'-Tetramethyl-3,3'-(p-phenylenedimethylene)diimidazol-1-ium bis[bis(trifluoromethylsulfonyl)imide] top
Crystal data top
C16H24N42+·2C2F6NO4S2F(000) = 868
Mr = 856.71Dx = 1.722 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4645 reflections
a = 8.7195 (7) Åθ = 2.7–28.4°
b = 13.710 (1) ŵ = 0.41 mm1
c = 13.8351 (11) ÅT = 100 K
β = 92.290 (1)°Block, colorless
V = 1652.6 (2) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3744 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.853, Tmax = 0.922k = 1417
10192 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.042P)2 + 1.3932P]
where P = (Fo2 + 2Fc2)/3
3744 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H24N42+·2C2F6NO4S2V = 1652.6 (2) Å3
Mr = 856.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7195 (7) ŵ = 0.41 mm1
b = 13.710 (1) ÅT = 100 K
c = 13.8351 (11) Å0.40 × 0.30 × 0.20 mm
β = 92.290 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3744 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3191 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.922Rint = 0.023
10192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
3744 reflectionsΔρmin = 0.41 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67739 (5)0.67845 (3)0.91285 (3)0.01904 (12)
S20.38200 (5)0.75917 (3)0.90601 (3)0.01821 (12)
F10.71875 (14)0.85090 (8)0.83605 (9)0.0308 (3)
F20.76447 (14)0.73079 (9)0.74157 (8)0.0300 (3)
F30.92506 (13)0.76619 (10)0.85879 (10)0.0390 (3)
F40.21558 (15)0.60557 (10)0.94569 (9)0.0361 (3)
F50.15962 (13)0.73471 (9)1.02456 (9)0.0308 (3)
F60.36490 (15)0.65461 (10)1.06344 (8)0.0347 (3)
O10.73759 (16)0.58470 (11)0.89041 (11)0.0289 (3)
O20.70581 (15)0.71643 (11)1.00822 (10)0.0272 (3)
O30.27597 (15)0.77674 (11)0.82658 (10)0.0277 (3)
O40.43736 (15)0.83923 (10)0.96315 (10)0.0267 (3)
N10.09231 (18)0.48286 (12)0.77903 (11)0.0211 (3)
N20.23507 (18)0.57396 (12)0.69354 (11)0.0208 (3)
N30.50715 (17)0.68460 (12)0.87134 (11)0.0196 (3)
C10.4064 (2)0.45239 (15)0.43276 (13)0.0215 (4)
H10.34170.41970.38630.026*
C20.3415 (2)0.50636 (15)0.50513 (13)0.0219 (4)
H20.23310.51030.50840.026*
C30.4355 (2)0.55475 (13)0.57304 (12)0.0170 (4)
C40.3691 (2)0.61775 (14)0.65040 (13)0.0210 (4)
H4A0.44900.62970.70190.025*
H4B0.33940.68160.62190.025*
C50.0846 (2)0.60245 (16)0.67350 (14)0.0261 (4)
H50.05100.65270.63040.031*
C60.0041 (2)0.54552 (15)0.72652 (14)0.0254 (4)
H60.11280.54760.72790.030*
C70.0391 (2)0.41044 (15)0.84840 (14)0.0242 (4)
H7A0.10060.41570.90900.036*
H7B0.05030.34480.82150.036*
H7C0.06900.42250.86100.036*
C80.2373 (2)0.50107 (14)0.75707 (12)0.0189 (4)
C90.3763 (2)0.45077 (15)0.79565 (14)0.0239 (4)
H9A0.45120.49920.81980.036*
H9B0.42100.41230.74410.036*
H9C0.34910.40750.84870.036*
C100.7775 (2)0.76175 (15)0.83281 (14)0.0234 (4)
C110.2749 (2)0.68402 (15)0.98983 (13)0.0221 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (2)0.0187 (2)0.0188 (2)0.00166 (17)0.00064 (16)0.00181 (17)
S20.0183 (2)0.0185 (2)0.0177 (2)0.00097 (16)0.00023 (16)0.00068 (17)
F10.0373 (7)0.0179 (6)0.0371 (7)0.0019 (5)0.0017 (5)0.0018 (5)
F20.0377 (6)0.0311 (7)0.0217 (6)0.0021 (5)0.0066 (5)0.0019 (5)
F30.0198 (6)0.0477 (9)0.0490 (8)0.0072 (5)0.0028 (5)0.0098 (7)
F40.0461 (7)0.0298 (7)0.0333 (7)0.0163 (6)0.0131 (6)0.0077 (5)
F50.0296 (6)0.0330 (7)0.0306 (6)0.0035 (5)0.0110 (5)0.0009 (5)
F60.0389 (7)0.0432 (8)0.0219 (6)0.0053 (6)0.0003 (5)0.0123 (5)
O10.0295 (7)0.0210 (8)0.0368 (8)0.0062 (6)0.0062 (6)0.0035 (6)
O20.0270 (7)0.0349 (9)0.0192 (7)0.0015 (6)0.0063 (5)0.0005 (6)
O30.0225 (7)0.0388 (9)0.0217 (7)0.0031 (6)0.0024 (5)0.0091 (6)
O40.0260 (7)0.0191 (7)0.0349 (8)0.0001 (5)0.0008 (6)0.0069 (6)
N10.0235 (7)0.0208 (9)0.0191 (7)0.0020 (6)0.0017 (6)0.0006 (6)
N20.0248 (8)0.0203 (9)0.0173 (7)0.0009 (6)0.0026 (6)0.0001 (6)
N30.0191 (7)0.0207 (9)0.0189 (7)0.0003 (6)0.0011 (6)0.0047 (6)
C10.0241 (9)0.0226 (10)0.0177 (8)0.0064 (7)0.0024 (7)0.0027 (7)
C20.0194 (8)0.0249 (10)0.0214 (9)0.0030 (7)0.0007 (7)0.0015 (8)
C30.0232 (8)0.0146 (9)0.0133 (8)0.0031 (7)0.0015 (6)0.0026 (6)
C40.0275 (9)0.0180 (10)0.0177 (8)0.0016 (7)0.0038 (7)0.0004 (7)
C50.0282 (10)0.0263 (11)0.0237 (9)0.0080 (8)0.0012 (8)0.0038 (8)
C60.0219 (9)0.0259 (11)0.0281 (10)0.0074 (8)0.0027 (7)0.0009 (8)
C70.0272 (9)0.0231 (11)0.0225 (9)0.0008 (8)0.0046 (7)0.0051 (8)
C80.0258 (9)0.0172 (9)0.0138 (8)0.0013 (7)0.0009 (6)0.0014 (7)
C90.0218 (9)0.0235 (10)0.0260 (10)0.0039 (7)0.0035 (7)0.0013 (8)
C100.0210 (9)0.0241 (11)0.0251 (9)0.0002 (7)0.0001 (7)0.0030 (8)
C110.0249 (9)0.0234 (10)0.0182 (9)0.0004 (7)0.0020 (7)0.0006 (7)
Geometric parameters (Å, º) top
S1—O11.4273 (15)C1—C21.384 (3)
S1—O21.4308 (14)C1—C3i1.387 (2)
S1—N31.5724 (15)C1—H10.9500
S1—C101.836 (2)C2—C31.390 (3)
S2—O41.4255 (14)C2—H20.9500
S2—O31.4280 (14)C3—C1i1.387 (2)
S2—N31.5837 (16)C3—C41.509 (2)
S2—C111.835 (2)C4—H4A0.9900
F1—C101.327 (2)C4—H4B0.9900
F2—C101.332 (2)C5—C61.338 (3)
F3—C101.323 (2)C5—H50.9500
F4—C111.331 (2)C6—H60.9500
F5—C111.327 (2)C7—H7A0.9800
F6—C111.324 (2)C7—H7B0.9800
N1—C81.335 (2)C7—H7C0.9800
N1—C61.387 (2)C8—C91.476 (3)
N1—C71.469 (2)C9—H9A0.9800
N2—C81.330 (2)C9—H9B0.9800
N2—C51.386 (2)C9—H9C0.9800
N2—C41.462 (2)
O1—S1—O2118.48 (9)C6—C5—N2106.80 (17)
O1—S1—N3108.59 (9)C6—C5—H5126.6
O2—S1—N3116.33 (8)N2—C5—H5126.6
O1—S1—C10103.95 (9)C5—C6—N1107.28 (17)
O2—S1—C10105.12 (9)C5—C6—H6126.4
N3—S1—C10102.19 (9)N1—C6—H6126.4
O4—S2—O3119.43 (9)N1—C7—H7A109.5
O4—S2—N3116.29 (8)N1—C7—H7B109.5
O3—S2—N3107.98 (8)H7A—C7—H7B109.5
O4—S2—C11104.56 (9)N1—C7—H7C109.5
O3—S2—C11104.53 (9)H7A—C7—H7C109.5
N3—S2—C11101.73 (9)H7B—C7—H7C109.5
C8—N1—C6108.92 (16)N2—C8—N1107.58 (16)
C8—N1—C7126.98 (16)N2—C8—C9125.43 (17)
C6—N1—C7124.10 (16)N1—C8—C9126.99 (17)
C8—N2—C5109.41 (16)C8—C9—H9A109.5
C8—N2—C4125.98 (16)C8—C9—H9B109.5
C5—N2—C4124.60 (16)H9A—C9—H9B109.5
S1—N3—S2125.16 (10)C8—C9—H9C109.5
C2—C1—C3i121.01 (17)H9A—C9—H9C109.5
C2—C1—H1119.5H9B—C9—H9C109.5
C3i—C1—H1119.5F3—C10—F1108.73 (17)
C1—C2—C3119.81 (17)F3—C10—F2108.50 (16)
C1—C2—H2120.1F1—C10—F2107.88 (16)
C3—C2—H2120.1F3—C10—S1110.21 (13)
C1i—C3—C2119.18 (17)F1—C10—S1111.04 (13)
C1i—C3—C4119.47 (16)F2—C10—S1110.41 (14)
C2—C3—C4121.31 (16)F6—C11—F5108.38 (15)
N2—C4—C3112.97 (15)F6—C11—F4108.32 (17)
N2—C4—H4A109.0F5—C11—F4107.65 (15)
C3—C4—H4A109.0F6—C11—S2110.87 (13)
N2—C4—H4B109.0F5—C11—S2110.29 (13)
C3—C4—H4B109.0F4—C11—S2111.22 (12)
H4A—C4—H4B107.8
O1—S1—N3—S2159.88 (11)C6—N1—C8—N20.8 (2)
O2—S1—N3—S223.18 (16)C7—N1—C8—N2178.01 (17)
C10—S1—N3—S290.68 (13)C6—N1—C8—C9179.42 (18)
O4—S2—N3—S114.34 (16)C7—N1—C8—C91.7 (3)
O3—S2—N3—S1151.77 (12)O1—S1—C10—F367.76 (16)
C11—S2—N3—S198.55 (13)O2—S1—C10—F357.41 (16)
C3i—C1—C2—C30.3 (3)N3—S1—C10—F3179.31 (14)
C1—C2—C3—C1i0.3 (3)O1—S1—C10—F1171.70 (13)
C1—C2—C3—C4177.36 (17)O2—S1—C10—F163.13 (15)
C8—N2—C4—C375.5 (2)N3—S1—C10—F158.76 (15)
C5—N2—C4—C3104.1 (2)O1—S1—C10—F252.09 (15)
C1i—C3—C4—N2140.06 (17)O2—S1—C10—F2177.26 (13)
C2—C3—C4—N242.3 (2)N3—S1—C10—F260.84 (15)
C8—N2—C5—C60.2 (2)O4—S2—C11—F659.50 (15)
C4—N2—C5—C6179.92 (17)O3—S2—C11—F6174.21 (13)
N2—C5—C6—N10.3 (2)N3—S2—C11—F661.92 (15)
C8—N1—C6—C50.7 (2)O4—S2—C11—F560.54 (15)
C7—N1—C6—C5178.19 (18)O3—S2—C11—F565.75 (15)
C5—N2—C8—N10.7 (2)N3—S2—C11—F5178.04 (13)
C4—N2—C8—N1179.66 (16)O4—S2—C11—F4179.90 (13)
C5—N2—C8—C9179.58 (18)O3—S2—C11—F453.62 (16)
C4—N2—C8—C90.1 (3)N3—S2—C11—F458.68 (15)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H24N42+·2C2F6NO4S2
Mr856.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.7195 (7), 13.710 (1), 13.8351 (11)
β (°) 92.290 (1)
V3)1652.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.853, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
10192, 3744, 3191
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.02
No. of reflections3744
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (grant No. TA010/2010 A) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPuvaneswary, S., Alias, Y. & Ng, S. W. (2009a). Acta Cryst. E65, o1829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPuvaneswary, S., Alias, Y. & Ng, S. W. (2009b). Acta Cryst. E65, o1830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds