metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(6-methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 15 June 2010; accepted 5 September 2010; online 11 September 2010)

In the title compound, [ZnBr2(C11H10N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from a 6-methyl-2,2′-bipyridine ligand and two terminal Br atoms. Weak inter­molecular C—H⋯Br hydrogen bonds and ππ stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.763 (5) and 3.835 (6) Å] contribute to crystal-packing effects.

Related literature

For unusual coordination geometries on transition metal atoms, see: Beeston et al. (1998[Beeston, R. F., Aldridge, W. S., Treadway, J. A., Fitzgerald, M. C., Degraff, B. A. & Stitzet, S. E. (1998). Inorg. Chem. 37, 4368-4379.]), Meyer et al. (1999[Meyer, M., Gary, A. M. A., Buchecker, C. O. D. & Sauvage, J. P. (1999). Inorg. Chem. 38, 2279-2287.]); For related literature, see: Ahmadi et al. (2009[Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169-m1170.]); Ahmadi, Ebadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Ahmadi, Kalateh et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Alizadeh et al. (2009[Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.]); Amani et al. (2009[Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026-3030.]); Newkome et al. (1982[Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782-1783.]); Onggo et al. (1990[Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19-30.], 2005[Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C11H10N2)]

  • Mr = 395.40

  • Monoclinic, P 21 /n

  • a = 7.6445 (7) Å

  • b = 9.7487 (11) Å

  • c = 17.8347 (18) Å

  • β = 96.972 (8)°

  • V = 1319.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.89 mm−1

  • T = 298 K

  • 0.46 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.076, Tmax = 0.310

  • 15389 measured reflections

  • 3567 independent reflections

  • 2498 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.207

  • S = 1.13

  • 3567 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 2.14 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯Br1i 0.96 2.86 3.805 (14) 169
C8—H8⋯Br1ii 0.93 2.93 3.812 (12) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sterically hindered ligands such as 6-Methyl-2, 2'-bipyridine (6-mbipy) often convey unusual coordination geometries or oxidation states on transition metal centers (Beeston et al., 1998; Meyer et al. 1999). Numerous complexes with 6-mbipy have been prepared, such as that of mercury (Ahmadi, Ebadi et al., 2008), platin (Amani et al., 2009), lead (Ahmadi et al., 2009), palladium (Newkome et al., 1982), ruthenium (Onggo, Scudder et al., 2005) and iron (Onggo, Hook et al., 1990). Here, we report the synthesis and structure of the title compound, [Zn(C11H10N2)Br2].

In the title compound (Fig. 1), the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one 6-methyl-2,2'-bipyridine and two terminal Br atoms. The Zn—N and Zn—Br bond lengths and angles are within the normal range of [ZnCl2(6-mbpy)], (Ahmadi, Kalateh et al., 2008) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 2) and π···π stacking interactions (Fig. 2, Table 1) between the pyridine rings,Cg1—Cg2 and Cg2—Cg3 contribute to crystal packing effects [where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively].

Related literature top

For unusual coordination geometries on transition metal centers, see: (Beeston et al. (1998), Meyer et al. (1999); For related literature, see: Ahmadi et al. (2009); Ahmadi, Ebadi, et al. (2008); Ahmadi, Kalateh, et al. (2008); Alizadeh et al. (2009); Amani et al. (2009); Newkome et al. (1982); Onggo et al. (1990, 2005).

Experimental top

For the preparation of the title compound, a solution of 6-methyl-2,2'-bipyridine (0.16 g, 0.15 ml 0.94 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.21 g, 0.94 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.28 g, 75.3%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics H, C—H = 0.96Å for methyl and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq. High values for Δρ are related to the poor quality of the crystals.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, [Zn(C11H10N2)Br2], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for [Zn(C11H10N2)Br2]. Dashed lines indicate weak C—H···Br intermolecular interactions.
Dibromido(6-methyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnBr2(C11H10N2)]F(000) = 760
Mr = 395.40Dx = 1.991 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 985 reflections
a = 7.6445 (7) Åθ = 2.3–29.4°
b = 9.7487 (11) ŵ = 7.89 mm1
c = 17.8347 (18) ÅT = 298 K
β = 96.972 (8)°Prism, colorless
V = 1319.3 (2) Å30.46 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
ϕ and ω scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 810
Tmin = 0.076, Tmax = 0.310k = 1313
15389 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0565P)2 + 8.4252P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[ZnBr2(C11H10N2)]V = 1319.3 (2) Å3
Mr = 395.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6445 (7) ŵ = 7.89 mm1
b = 9.7487 (11) ÅT = 298 K
c = 17.8347 (18) Å0.46 × 0.30 × 0.15 mm
β = 96.972 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2498 reflections with I > 2σ(I)
Tmin = 0.076, Tmax = 0.310Rint = 0.119
15389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.13Δρmax = 2.14 e Å3
3567 reflectionsΔρmin = 1.14 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.651 (2)0.9482 (15)0.2106 (6)0.099 (5)
H1A0.75900.90420.23020.119*
H1B0.55940.88050.20120.119*
H1C0.61831.01350.24680.119*
C20.6740 (14)1.0200 (10)0.1390 (6)0.063 (2)
C30.6519 (15)1.1604 (12)0.1292 (7)0.074 (3)
H30.62271.21530.16850.089*
C40.6738 (15)1.2162 (11)0.0608 (8)0.075 (3)
H40.65591.30970.05270.090*
C50.7221 (13)1.1355 (10)0.0041 (6)0.063 (2)
H50.74151.17390.04190.076*
C60.7415 (11)0.9971 (9)0.0160 (5)0.051 (2)
C70.7873 (11)0.8977 (10)0.0412 (5)0.0509 (19)
C80.8184 (14)0.9373 (12)0.1129 (6)0.070 (3)
H80.81681.02930.12680.084*
C90.8523 (16)0.8339 (15)0.1639 (6)0.080 (3)
H90.87350.85680.21260.096*
C100.8542 (18)0.7025 (14)0.1426 (6)0.080 (3)
H100.87360.63390.17680.097*
C110.8280 (15)0.6692 (12)0.0710 (6)0.072 (3)
H110.83440.57760.05630.087*
N10.7182 (10)0.9406 (7)0.0849 (4)0.0508 (17)
N20.7930 (10)0.7647 (8)0.0208 (4)0.0530 (17)
Br11.04853 (15)0.69883 (13)0.15998 (7)0.0756 (4)
Br20.54078 (15)0.58954 (13)0.11809 (7)0.0767 (4)
Zn10.76827 (14)0.73342 (11)0.09099 (6)0.0525 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.147 (13)0.102 (10)0.056 (6)0.016 (9)0.040 (8)0.011 (6)
C20.063 (6)0.057 (5)0.068 (6)0.004 (5)0.010 (5)0.004 (5)
C30.061 (6)0.070 (7)0.088 (8)0.006 (5)0.001 (5)0.018 (6)
C40.071 (7)0.051 (5)0.102 (9)0.003 (5)0.005 (6)0.013 (6)
C50.063 (6)0.056 (5)0.070 (6)0.003 (5)0.008 (5)0.015 (5)
C60.038 (4)0.058 (5)0.056 (5)0.005 (4)0.001 (3)0.021 (4)
C70.045 (4)0.063 (5)0.043 (4)0.006 (4)0.002 (3)0.009 (4)
C80.060 (6)0.089 (7)0.058 (6)0.018 (5)0.002 (5)0.028 (5)
C90.076 (7)0.122 (11)0.046 (5)0.016 (7)0.018 (5)0.005 (6)
C100.091 (8)0.098 (9)0.056 (6)0.006 (7)0.021 (6)0.010 (6)
C110.081 (7)0.073 (7)0.068 (6)0.007 (6)0.029 (6)0.004 (5)
N10.052 (4)0.050 (4)0.052 (4)0.004 (3)0.015 (3)0.008 (3)
N20.059 (4)0.059 (4)0.042 (3)0.001 (4)0.012 (3)0.008 (3)
Br10.0576 (6)0.0870 (8)0.0815 (7)0.0001 (5)0.0052 (5)0.0382 (6)
Br20.0673 (7)0.0768 (7)0.0878 (8)0.0131 (5)0.0173 (6)0.0197 (6)
Zn10.0560 (6)0.0509 (6)0.0528 (6)0.0038 (5)0.0149 (4)0.0129 (4)
Geometric parameters (Å, º) top
C1—C21.486 (16)C7—N21.346 (11)
C1—H1A0.9600C7—C81.383 (12)
C1—H1B0.9600C8—C91.402 (17)
C1—H1C0.9600C8—H80.9300
C2—N11.312 (12)C9—C101.335 (18)
C2—C31.388 (15)C9—H90.9300
C3—C41.364 (17)C10—C111.355 (15)
C3—H30.9300C10—H100.9300
C4—C51.368 (16)C11—N21.342 (13)
C4—H40.9300C11—H110.9300
C5—C61.370 (13)N1—Zn12.057 (7)
C5—H50.9300N2—Zn12.048 (7)
C6—N11.378 (10)Br1—Zn12.3617 (16)
C6—C71.480 (13)Br2—Zn12.3300 (15)
Cg1···Cg2i3.762 (5)Cg2···Cg3ii3.835 (6)
C2—C1—H1A109.5C7—C8—C9117.7 (10)
C2—C1—H1B109.5C7—C8—H8121.2
H1A—C1—H1B109.5C9—C8—H8121.2
C2—C1—H1C109.5C10—C9—C8120.1 (10)
H1A—C1—H1C109.5C10—C9—H9120.0
H1B—C1—H1C109.5C8—C9—H9120.0
N1—C2—C3121.8 (10)C9—C10—C11120.0 (11)
N1—C2—C1115.0 (9)C9—C10—H10120.0
C3—C2—C1123.2 (10)C11—C10—H10120.0
C4—C3—C2118.7 (11)N2—C11—C10121.8 (11)
C4—C3—H3120.7N2—C11—H11119.1
C2—C3—H3120.7C10—C11—H11119.1
C3—C4—C5120.3 (10)C2—N1—C6119.5 (8)
C3—C4—H4119.8C2—N1—Zn1127.1 (6)
C5—C4—H4119.8C6—N1—Zn1113.3 (6)
C4—C5—C6119.1 (10)C11—N2—C7119.4 (8)
C4—C5—H5120.5C11—N2—Zn1126.6 (7)
C6—C5—H5120.5C7—N2—Zn1113.8 (6)
C5—C6—N1120.5 (9)N2—Zn1—N180.9 (3)
C5—C6—C7124.6 (8)N2—Zn1—Br2116.8 (2)
N1—C6—C7114.9 (8)N1—Zn1—Br2117.6 (2)
N2—C7—C8121.0 (9)N2—Zn1—Br1110.1 (2)
N2—C7—C6116.5 (7)N1—Zn1—Br1108.6 (2)
C8—C7—C6122.4 (9)Br2—Zn1—Br1117.30 (6)
N1—C2—C3—C41.2 (17)C5—C6—N1—Zn1176.7 (7)
C1—C2—C3—C4179.0 (12)C7—C6—N1—Zn13.4 (9)
C2—C3—C4—C52.1 (18)C10—C11—N2—C71.4 (17)
C3—C4—C5—C62.5 (17)C10—C11—N2—Zn1175.1 (9)
C4—C5—C6—N12.0 (15)C8—C7—N2—C110.5 (14)
C4—C5—C6—C7177.9 (9)C6—C7—N2—C11177.8 (9)
C5—C6—C7—N2177.1 (9)C8—C7—N2—Zn1174.0 (7)
N1—C6—C7—N22.9 (11)C6—C7—N2—Zn17.7 (10)
C5—C6—C7—C81.2 (14)C11—N2—Zn1—N1178.6 (9)
N1—C6—C7—C8178.8 (8)C7—N2—Zn1—N17.4 (6)
N2—C7—C8—C91.3 (15)C11—N2—Zn1—Br262.2 (9)
C6—C7—C8—C9176.9 (9)C7—N2—Zn1—Br2123.7 (6)
C7—C8—C9—C100.1 (17)C11—N2—Zn1—Br174.8 (9)
C8—C9—C10—C112 (2)C7—N2—Zn1—Br199.2 (6)
C9—C10—C11—N23 (2)C2—N1—Zn1—N2176.6 (9)
C3—C2—N1—C60.8 (15)C6—N1—Zn1—N25.8 (6)
C1—C2—N1—C6179.5 (10)C2—N1—Zn1—Br261.0 (9)
C3—C2—N1—Zn1176.7 (8)C6—N1—Zn1—Br2121.3 (5)
C1—C2—N1—Zn13.0 (14)C2—N1—Zn1—Br175.2 (8)
C5—C6—N1—C21.2 (13)C6—N1—Zn1—Br1102.5 (6)
C7—C6—N1—C2178.7 (8)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1iii0.962.863.805 (14)169
C8—H8···Br1ii0.932.933.812 (12)159
Symmetry codes: (ii) x+2, y+2, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C11H10N2)]
Mr395.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.6445 (7), 9.7487 (11), 17.8347 (18)
β (°) 96.972 (8)
V3)1319.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.89
Crystal size (mm)0.46 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.076, 0.310
No. of measured, independent and
observed [I > 2σ(I)] reflections
15389, 3567, 2498
Rint0.119
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.207, 1.13
No. of reflections3567
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.14, 1.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1i0.962.863.805 (14)169
C8—H8···Br1ii0.932.933.812 (12)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeeston, R. F., Aldridge, W. S., Treadway, J. A., Fitzgerald, M. C., Degraff, B. A. & Stitzet, S. E. (1998). Inorg. Chem. 37, 4368–4379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, M., Gary, A. M. A., Buchecker, C. O. D. & Sauvage, J. P. (1999). Inorg. Chem. 38, 2279–2287.  Web of Science CrossRef CAS Google Scholar
First citationNewkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.  CSD CrossRef CAS Web of Science Google Scholar
First citationOnggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30.  CSD CrossRef CAS Web of Science Google Scholar
First citationOnggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds