metal-organic compounds
Dibromido(6-methyl-2,2′-bipyridine-κ2N,N′)zinc(II)
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the title compound, [ZnBr2(C11H10N2)], the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 6-methyl-2,2′-bipyridine ligand and two terminal Br atoms. Weak intermolecular C—H⋯Br hydrogen bonds and π–π stacking interactions between the pyridine rings [centroid–centroid distances = 3.763 (5) and 3.835 (6) Å] contribute to crystal-packing effects.
Related literature
For unusual coordination geometries on transition metal atoms, see: Beeston et al. (1998), Meyer et al. (1999); For related literature, see: Ahmadi et al. (2009); Ahmadi, Ebadi et al. (2008); Ahmadi, Kalateh et al. (2008); Alizadeh et al. (2009); Amani et al. (2009); Newkome et al. (1982); Onggo et al. (1990, 2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810035658/jj2041sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810035658/jj2041Isup2.hkl
For the preparation of the title compound, a solution of 6-methyl-2,2'-bipyridine (0.16 g, 0.15 ml 0.94 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.21 g, 0.94 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.28 g, 75.3%).
All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics H, C—H = 0.96Å for methyl and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq. High values for Δρ are related to the poor quality of the crystals.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[ZnBr2(C11H10N2)] | F(000) = 760 |
Mr = 395.40 | Dx = 1.991 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 985 reflections |
a = 7.6445 (7) Å | θ = 2.3–29.4° |
b = 9.7487 (11) Å | µ = 7.89 mm−1 |
c = 17.8347 (18) Å | T = 298 K |
β = 96.972 (8)° | Prism, colorless |
V = 1319.3 (2) Å3 | 0.46 × 0.30 × 0.15 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3567 independent reflections |
Radiation source: fine-focus sealed tube | 2498 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.119 |
ϕ and ω scans | θmax = 29.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→10 |
Tmin = 0.076, Tmax = 0.310 | k = −13→13 |
15389 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.086 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.207 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0565P)2 + 8.4252P] where P = (Fo2 + 2Fc2)/3 |
3567 reflections | (Δ/σ)max = 0.002 |
145 parameters | Δρmax = 2.14 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
[ZnBr2(C11H10N2)] | V = 1319.3 (2) Å3 |
Mr = 395.40 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.6445 (7) Å | µ = 7.89 mm−1 |
b = 9.7487 (11) Å | T = 298 K |
c = 17.8347 (18) Å | 0.46 × 0.30 × 0.15 mm |
β = 96.972 (8)° |
Bruker SMART CCD area-detector diffractometer | 3567 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2498 reflections with I > 2σ(I) |
Tmin = 0.076, Tmax = 0.310 | Rint = 0.119 |
15389 measured reflections |
R[F2 > 2σ(F2)] = 0.086 | 0 restraints |
wR(F2) = 0.207 | H-atom parameters constrained |
S = 1.13 | Δρmax = 2.14 e Å−3 |
3567 reflections | Δρmin = −1.14 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.651 (2) | 0.9482 (15) | 0.2106 (6) | 0.099 (5) | |
H1A | 0.7590 | 0.9042 | 0.2302 | 0.119* | |
H1B | 0.5594 | 0.8805 | 0.2012 | 0.119* | |
H1C | 0.6183 | 1.0135 | 0.2468 | 0.119* | |
C2 | 0.6740 (14) | 1.0200 (10) | 0.1390 (6) | 0.063 (2) | |
C3 | 0.6519 (15) | 1.1604 (12) | 0.1292 (7) | 0.074 (3) | |
H3 | 0.6227 | 1.2153 | 0.1685 | 0.089* | |
C4 | 0.6738 (15) | 1.2162 (11) | 0.0608 (8) | 0.075 (3) | |
H4 | 0.6559 | 1.3097 | 0.0527 | 0.090* | |
C5 | 0.7221 (13) | 1.1355 (10) | 0.0041 (6) | 0.063 (2) | |
H5 | 0.7415 | 1.1739 | −0.0419 | 0.076* | |
C6 | 0.7415 (11) | 0.9971 (9) | 0.0160 (5) | 0.051 (2) | |
C7 | 0.7873 (11) | 0.8977 (10) | −0.0412 (5) | 0.0509 (19) | |
C8 | 0.8184 (14) | 0.9373 (12) | −0.1129 (6) | 0.070 (3) | |
H8 | 0.8168 | 1.0293 | −0.1268 | 0.084* | |
C9 | 0.8523 (16) | 0.8339 (15) | −0.1639 (6) | 0.080 (3) | |
H9 | 0.8735 | 0.8568 | −0.2126 | 0.096* | |
C10 | 0.8542 (18) | 0.7025 (14) | −0.1426 (6) | 0.080 (3) | |
H10 | 0.8736 | 0.6339 | −0.1768 | 0.097* | |
C11 | 0.8280 (15) | 0.6692 (12) | −0.0710 (6) | 0.072 (3) | |
H11 | 0.8344 | 0.5776 | −0.0563 | 0.087* | |
N1 | 0.7182 (10) | 0.9406 (7) | 0.0849 (4) | 0.0508 (17) | |
N2 | 0.7930 (10) | 0.7647 (8) | −0.0208 (4) | 0.0530 (17) | |
Br1 | 1.04853 (15) | 0.69883 (13) | 0.15998 (7) | 0.0756 (4) | |
Br2 | 0.54078 (15) | 0.58954 (13) | 0.11809 (7) | 0.0767 (4) | |
Zn1 | 0.76827 (14) | 0.73342 (11) | 0.09099 (6) | 0.0525 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.147 (13) | 0.102 (10) | 0.056 (6) | 0.016 (9) | 0.040 (8) | −0.011 (6) |
C2 | 0.063 (6) | 0.057 (5) | 0.068 (6) | 0.004 (5) | 0.010 (5) | −0.004 (5) |
C3 | 0.061 (6) | 0.070 (7) | 0.088 (8) | 0.006 (5) | 0.001 (5) | −0.018 (6) |
C4 | 0.071 (7) | 0.051 (5) | 0.102 (9) | 0.003 (5) | 0.005 (6) | 0.013 (6) |
C5 | 0.063 (6) | 0.056 (5) | 0.070 (6) | 0.003 (5) | 0.008 (5) | 0.015 (5) |
C6 | 0.038 (4) | 0.058 (5) | 0.056 (5) | −0.005 (4) | −0.001 (3) | 0.021 (4) |
C7 | 0.045 (4) | 0.063 (5) | 0.043 (4) | −0.006 (4) | 0.002 (3) | 0.009 (4) |
C8 | 0.060 (6) | 0.089 (7) | 0.058 (6) | −0.018 (5) | 0.002 (5) | 0.028 (5) |
C9 | 0.076 (7) | 0.122 (11) | 0.046 (5) | −0.016 (7) | 0.018 (5) | −0.005 (6) |
C10 | 0.091 (8) | 0.098 (9) | 0.056 (6) | −0.006 (7) | 0.021 (6) | −0.010 (6) |
C11 | 0.081 (7) | 0.073 (7) | 0.068 (6) | 0.007 (6) | 0.029 (6) | −0.004 (5) |
N1 | 0.052 (4) | 0.050 (4) | 0.052 (4) | 0.004 (3) | 0.015 (3) | 0.008 (3) |
N2 | 0.059 (4) | 0.059 (4) | 0.042 (3) | −0.001 (4) | 0.012 (3) | 0.008 (3) |
Br1 | 0.0576 (6) | 0.0870 (8) | 0.0815 (7) | 0.0001 (5) | 0.0052 (5) | 0.0382 (6) |
Br2 | 0.0673 (7) | 0.0768 (7) | 0.0878 (8) | −0.0131 (5) | 0.0173 (6) | 0.0197 (6) |
Zn1 | 0.0560 (6) | 0.0509 (6) | 0.0528 (6) | 0.0038 (5) | 0.0149 (4) | 0.0129 (4) |
C1—C2 | 1.486 (16) | C7—N2 | 1.346 (11) |
C1—H1A | 0.9600 | C7—C8 | 1.383 (12) |
C1—H1B | 0.9600 | C8—C9 | 1.402 (17) |
C1—H1C | 0.9600 | C8—H8 | 0.9300 |
C2—N1 | 1.312 (12) | C9—C10 | 1.335 (18) |
C2—C3 | 1.388 (15) | C9—H9 | 0.9300 |
C3—C4 | 1.364 (17) | C10—C11 | 1.355 (15) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.368 (16) | C11—N2 | 1.342 (13) |
C4—H4 | 0.9300 | C11—H11 | 0.9300 |
C5—C6 | 1.370 (13) | N1—Zn1 | 2.057 (7) |
C5—H5 | 0.9300 | N2—Zn1 | 2.048 (7) |
C6—N1 | 1.378 (10) | Br1—Zn1 | 2.3617 (16) |
C6—C7 | 1.480 (13) | Br2—Zn1 | 2.3300 (15) |
Cg1···Cg2i | 3.762 (5) | Cg2···Cg3ii | 3.835 (6) |
C2—C1—H1A | 109.5 | C7—C8—C9 | 117.7 (10) |
C2—C1—H1B | 109.5 | C7—C8—H8 | 121.2 |
H1A—C1—H1B | 109.5 | C9—C8—H8 | 121.2 |
C2—C1—H1C | 109.5 | C10—C9—C8 | 120.1 (10) |
H1A—C1—H1C | 109.5 | C10—C9—H9 | 120.0 |
H1B—C1—H1C | 109.5 | C8—C9—H9 | 120.0 |
N1—C2—C3 | 121.8 (10) | C9—C10—C11 | 120.0 (11) |
N1—C2—C1 | 115.0 (9) | C9—C10—H10 | 120.0 |
C3—C2—C1 | 123.2 (10) | C11—C10—H10 | 120.0 |
C4—C3—C2 | 118.7 (11) | N2—C11—C10 | 121.8 (11) |
C4—C3—H3 | 120.7 | N2—C11—H11 | 119.1 |
C2—C3—H3 | 120.7 | C10—C11—H11 | 119.1 |
C3—C4—C5 | 120.3 (10) | C2—N1—C6 | 119.5 (8) |
C3—C4—H4 | 119.8 | C2—N1—Zn1 | 127.1 (6) |
C5—C4—H4 | 119.8 | C6—N1—Zn1 | 113.3 (6) |
C4—C5—C6 | 119.1 (10) | C11—N2—C7 | 119.4 (8) |
C4—C5—H5 | 120.5 | C11—N2—Zn1 | 126.6 (7) |
C6—C5—H5 | 120.5 | C7—N2—Zn1 | 113.8 (6) |
C5—C6—N1 | 120.5 (9) | N2—Zn1—N1 | 80.9 (3) |
C5—C6—C7 | 124.6 (8) | N2—Zn1—Br2 | 116.8 (2) |
N1—C6—C7 | 114.9 (8) | N1—Zn1—Br2 | 117.6 (2) |
N2—C7—C8 | 121.0 (9) | N2—Zn1—Br1 | 110.1 (2) |
N2—C7—C6 | 116.5 (7) | N1—Zn1—Br1 | 108.6 (2) |
C8—C7—C6 | 122.4 (9) | Br2—Zn1—Br1 | 117.30 (6) |
N1—C2—C3—C4 | 1.2 (17) | C5—C6—N1—Zn1 | −176.7 (7) |
C1—C2—C3—C4 | −179.0 (12) | C7—C6—N1—Zn1 | 3.4 (9) |
C2—C3—C4—C5 | −2.1 (18) | C10—C11—N2—C7 | −1.4 (17) |
C3—C4—C5—C6 | 2.5 (17) | C10—C11—N2—Zn1 | −175.1 (9) |
C4—C5—C6—N1 | −2.0 (15) | C8—C7—N2—C11 | −0.5 (14) |
C4—C5—C6—C7 | 177.9 (9) | C6—C7—N2—C11 | 177.8 (9) |
C5—C6—C7—N2 | −177.1 (9) | C8—C7—N2—Zn1 | 174.0 (7) |
N1—C6—C7—N2 | 2.9 (11) | C6—C7—N2—Zn1 | −7.7 (10) |
C5—C6—C7—C8 | 1.2 (14) | C11—N2—Zn1—N1 | −178.6 (9) |
N1—C6—C7—C8 | −178.8 (8) | C7—N2—Zn1—N1 | 7.4 (6) |
N2—C7—C8—C9 | 1.3 (15) | C11—N2—Zn1—Br2 | −62.2 (9) |
C6—C7—C8—C9 | −176.9 (9) | C7—N2—Zn1—Br2 | 123.7 (6) |
C7—C8—C9—C10 | −0.1 (17) | C11—N2—Zn1—Br1 | 74.8 (9) |
C8—C9—C10—C11 | −2 (2) | C7—N2—Zn1—Br1 | −99.2 (6) |
C9—C10—C11—N2 | 3 (2) | C2—N1—Zn1—N2 | 176.6 (9) |
C3—C2—N1—C6 | −0.8 (15) | C6—N1—Zn1—N2 | −5.8 (6) |
C1—C2—N1—C6 | 179.5 (10) | C2—N1—Zn1—Br2 | 61.0 (9) |
C3—C2—N1—Zn1 | 176.7 (8) | C6—N1—Zn1—Br2 | −121.3 (5) |
C1—C2—N1—Zn1 | −3.0 (14) | C2—N1—Zn1—Br1 | −75.2 (8) |
C5—C6—N1—C2 | 1.2 (13) | C6—N1—Zn1—Br1 | 102.5 (6) |
C7—C6—N1—C2 | −178.7 (8) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Br1iii | 0.96 | 2.86 | 3.805 (14) | 169 |
C8—H8···Br1ii | 0.93 | 2.93 | 3.812 (12) | 159 |
Symmetry codes: (ii) −x+2, −y+2, −z; (iii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C11H10N2)] |
Mr | 395.40 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 7.6445 (7), 9.7487 (11), 17.8347 (18) |
β (°) | 96.972 (8) |
V (Å3) | 1319.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.89 |
Crystal size (mm) | 0.46 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.076, 0.310 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15389, 3567, 2498 |
Rint | 0.119 |
(sin θ/λ)max (Å−1) | 0.690 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.086, 0.207, 1.13 |
No. of reflections | 3567 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.14, −1.14 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Br1i | 0.96 | 2.86 | 3.805 (14) | 169 |
C8—H8···Br1ii | 0.93 | 2.93 | 3.812 (12) | 159 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030. Web of Science CSD CrossRef CAS Google Scholar
Beeston, R. F., Aldridge, W. S., Treadway, J. A., Fitzgerald, M. C., Degraff, B. A. & Stitzet, S. E. (1998). Inorg. Chem. 37, 4368–4379. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Meyer, M., Gary, A. M. A., Buchecker, C. O. D. & Sauvage, J. P. (1999). Inorg. Chem. 38, 2279–2287. Web of Science CrossRef CAS Google Scholar
Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783. CSD CrossRef CAS Web of Science Google Scholar
Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30. CSD CrossRef CAS Web of Science Google Scholar
Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sterically hindered ligands such as 6-Methyl-2, 2'-bipyridine (6-mbipy) often convey unusual coordination geometries or oxidation states on transition metal centers (Beeston et al., 1998; Meyer et al. 1999). Numerous complexes with 6-mbipy have been prepared, such as that of mercury (Ahmadi, Ebadi et al., 2008), platin (Amani et al., 2009), lead (Ahmadi et al., 2009), palladium (Newkome et al., 1982), ruthenium (Onggo, Scudder et al., 2005) and iron (Onggo, Hook et al., 1990). Here, we report the synthesis and structure of the title compound, [Zn(C11H10N2)Br2].
In the title compound (Fig. 1), the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one 6-methyl-2,2'-bipyridine and two terminal Br atoms. The Zn—N and Zn—Br bond lengths and angles are within the normal range of [ZnCl2(6-mbpy)], (Ahmadi, Kalateh et al., 2008) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.
In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 2) and π···π stacking interactions (Fig. 2, Table 1) between the pyridine rings,Cg1—Cg2 and Cg2—Cg3 contribute to crystal packing effects [where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively].